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The goal of this paper is to prove the equivalence of properly defined
moduli of functions and the Peetre K-functional K(t\ fj = inf{ Ilf - gllp +
tk II Wkg(k)ll p : g} for a wide class of weights w. The paper continues the
investigations of Ditzian [3J and Totik [12J and shows that the moduli
used by both authors are in many cases equivalent to the moduli
introduced in [7]. Proximate inequalities between the K-funclionals for
different weights are derived.

1. INTRODUCTION

We deal with functions defined on the (finite or infinite) interval [a, b].
Let Lp[a, bJ (1::::;; p::::;; 00) be the set of all classes of measurable functions f
for which

Ilfll p = Ilfllp[a.b] = u: If(x)1 P dX) lp < C/J,

let C[a, bJ be the set of all continuous functions in [a, b] with a norm

Ilfll x = Ilfll ce [a.b] = sup{ If(x}!: x E [a, bJ},

and let 11';(11') (1::::;; p::::;; oc, k natural) be the set of all functions which
are locally absolutely continuous together with g', ..., g(k - 1) and
II wkg(k)ll p < C/), where the weight II' is continuous and locally positive in
[a, b]. Here and throughout "locally" means that the property is fulfilled in
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every subinterval [a', b'] (a < a' < b' < b) of the interval [a, b]. The
weighted Peetre K-functional for the function I is given by

K(tk,f)=K(tk,I;Lp, W~(w))

= inf{ III - gllp + tkIlwkg(k)ll p : gE W;(w)}. (1.1)

Let us underline that we require IE Lp + W;(w), i.e.,! = 10 +11 for some
10 E Lp, 11 E W;(w), and therefore IE Lp.1oc[a, b]; but in general I will not
belong to Lp[a, b].

The weighted K-functional has proved useful in the characterization of
many approximating processes. More precisely, the equivalence

III - Mn/llp[a.b] = O(n- fJ ) <=> K(tk, I; Lp[a, b], W;(w)) = O(t<X), (1.2)

0< a < k, holds true when:

(a) M n is the operator of best approximation in Lp[a, b] by
algebraic polynomials of degree n, w(x) = J(b - x)(x - a), 1~ p ~ 00,
p= a, natural k;

(b) Mn/ are Bernstein polynomials, [a, b] = [0,1], w(x)=

.J(x - x 2
), P = 00, P= a12, k = 2 (Berens and Lorentz [1], Ditzian [4]);

(c) Mn/are Kantorovich polynomials, [a,b]=[O,l], w(x)=

J(x-x 2
), l~p~oo, p=rxI2, k=2 (Grundmann [6], Muller [10]);

(d) M,J are Szasz-Mirakjan (lI'(x) = fi) or Baskakov (w(x) =

J(x +x2
)) operators, [a, b] = [0,00), p = 00, p= a12, k= 2 (Totik [13]).

Many other examples for the validity of (1.2) with different M n can be
given.

But, when we want to calculate the degree of approximation of a given
function f, the equivalence (1.2) is not very useful-the class of functions
for which one can evaluate directly the infimum in (1.1) is rather narrow.
Fortunately, the K-functionals are equivalent to moduli of smoothness
which are easier to compute. In the case w(x) == 1 the equivalence

is well known, where the moduli of smoothness are given by

Equivalence (1.3) was extended with suitably defined moduli for different
types of weights by Ditzian [3] (w(x) = x<X, X E [0, 1], natural k) and
Totik [12] (k = 2 and 11' twice locally differentiable). In this paper we use
other kinds of moduli to establish an analog of (1.3) for the K-functionals
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(1.1). These moduli were introduced by the author [7] to characterize the
best algebraic approximations and the approximations by Bernstein
polynomials.

During the preparation of the manuscript we learned that Ditzian and
Totik also generalized in [5] the results from [3] and [12]. Many
applications of the weighted Peetre K-functionals in approximation theory
are also given in [5].

The moduli we shall use (see [7,8, 9J) are given by

where

Wk(f, x; l/J(t, x))q

=[(2l/J(t,X))-1 f!jJ(t·X) IL1~j(XWdhJlq (1~q<O'J),
-!jJ(t,X)

wk(f, x; l/J(t, x))x = sup{IL17,j(x)l: Ihl ~ ifi(t, x)},

and L1~j(x)=L1~o(-1)k-i(7)j(x+ih) if x,x+khE[a,b] and
Ll7,j(x) = 0 otherwise. Here l/J is a continuous positive function of x in
[a, b] for any t E (0, to].

The main result of the paper is

c(k, 11') Tk(f; l/J(t))P.P ~ K(t\ j; L p, W~(w))

~ c(k, 11') Tk(f; l/J(t))P.P' (1.4)

where the connection between IV and l/J is given by (3.11).
The paper is organized as follows. In Section 3 we describe different

types of weights and give some of their properties. Inequalities for moduli
of differentiable functions and the proof of the first inequality in (1.4) are
given in Section 4. Following the ideas in [9] we construct appropriate
intermediate functions and complete the proof of (1.4) in Section 5. Various
kinds of properties of the moduli are derived in Section 6 as a consequence
of the previous results. Proximate inequalities between the K-functionals
corresponding to different weights are obtained in Section 7.

2. PRILIMINARIES

In the paper I ~ p, q~ 'XJ, lip + lip' = 1; A, t, '1 = canst> 0; k is natural;
f.1 is a fixed CX(IR) function such that J.l(x) =0 for X~O, ,u(x) = 1 for x;::;: 1,
and 0 < J.l(x) < I for 0 < x < I; c denotes a positive number which may be
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different at each occurence. The exact dependence of c on the other
parameters is explicitly given. With A, A', AI, ... we denote constants
preserving their values throughout the paper.

Two functions, v and u, are associated with the weight w in
neighbourhoods of the end-points a and b. Let a and b be finite. Consider a
neighbourhood [a, d] of a or Cd, b] of b; we denote v(x)=x/w(a+x) for
x E (0, d - a] or v(x) = x/w(b - x) for x E (0, b - d], respectively. u is the
inverse function to v, i.e., u(v(x)) = v(u(x)) = x. In the case u will be used a
and b will be finite, v will be continuous, strictly monotone, and v(O) = O.
For a = 0 the functions u and ware connected by

u(x) = v(u(x)) w(u(x)) = xw(u(x)).

For infinite end points we set v(x) = x/w(x) (b = (0) or v(x) = x/w( -x)
(a = - (0) for x E [d, 0')), d> O.

Different forms of Minkowski's and Holder's inequalities will often be
used without explicit mention.

Let H" be the set of all algebraic polynomials of degree not greater than
n and let

E,,(f)p[a,b] = inf{ Ilf - Qllp[a,b]: Q E H,,}

denote the best algebraic approximation offin Lp[a, b].
The inequality

(2.1 )

known as Whitney's theorem, was proved by H. Whitney [14] for p = 0')
and f E C[a, b] and was extended by Y. A. Brudnii [2] for 1:::;; p < 'XJ and
fELp[a, b] ([a, b] finite).

We assume the properties of Wk(f; t) p are known.

LEMMA 2.1.

'k(f + g; l/J(t))q,p:::;; ,df; l/J(t))q,p + 'k(g; l/J(t))q,p. (2.2)

'k(rxf; l/J(t))q,p = Irxl 'k(f; l/J(t))q.P (real rx). (2.3)

'k(f;l/J(t))q.p:::;;'k(f;l/J(t))r,p if 1:::;;q:::;;r:::;;00. (2.4)

This lemma follows directly from the definition of, moduli.

LEMMA 2.2. If we assume that f(z) = 0 in (2.6) or jlkl(Z) = 0 in (2.7)
when z does not belong to [a, b], then
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(;Jk(f,x;hIl'l~A'Wk(f,x;h2)'1 if hl~h2~A'hl' (2.5!

Wk~f, x; h)q ~ If(x)1 + c(k) {(2kh) -I ('~h IfIx + y)llf d.~r/'1 a.e., (2.6 1

w"U, x: h )" ~ c(k) II" {(2kh) -I j"'h Ipk)(x + y)!" d.rrq

-kh )

ifflkIELJx-kh.x+khl (27;

Proof We get (2.5) and (2.6) from the definition. To prove (2.7) we
proceed as follows,

·k=
~C(k)Zk-IJ If(k)(X+yJldy

o

and

·h

(Jh(f,x;h)~=(2h)-1j (1L1~f(x)lq+IL1':-J(x)!")dz
o

~c(k)q(2hJ-Irzkq-I j"<= IIpk)(x+ Y)I'I
o 0

·kh
~c(kJq(2h)-1J (If{kl(X+ .1')1"

o

+ IPkl(X- yJllf) r zkq--I dzd.v
}':k

Let us denote by Nk(x) the normalized B-spline of degree k - 1 with
nodes 0,1, ..., k (see [11, pp. 134-137]). Then N k E Ck

-
2(1R), Nk{x) = 0 for

x~O or x~k, SC:=oo Nk(x)dx= 1, and

0< Nk(x) ~ min{xk - I ; (k - X)k-I J/(k - II! forxE(O,k). (2.8)
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The connection between B-splines and finite differences is given by

·kh
L1Zf(x)=hk

-
1 J Nk(y/h)f(k)(x+ y)dy.

o
(2.9)

The following lemma and (2.4) show that moduli Tk(f; tf;(t))p,p can be
considered as a generalization of the moduli of smoothness wAf; t)p.

LEMMA 2.3. Let fELp[a,b], tf;(t,x)=t for every xE[a,b], and
0< t";; (b-a)/(2k) if [a, b] is a finite interval. Then

For a finite interval this is Theorem 3.1 in [8]. The proof for an infinite
interval is similar but simpler.

The following embedding lemma will be extensively used (see Lemma 2.1
in [3] or Lemma 2.2 in [9]).

LEMMA 2.4. Let [a, b] be finite and g E W;( 1). Then for each
j = 0, 1, ..., k we have

.' () [ k 'k)(b - aJi11 g J IIp[a,bJ'';; c(k) II gllp[a,bJ + (b - a) II gl IIp[a.bJ].

3. BEHAVIOUR OF THE WEIGHT NEAR THE END-POINTS

The weight w is assumed to be continuous and locally positive. Therefore
w is bounded from zero and infinity in every closed subinterval of the
interior of [a, b]. But w may tend to °or 00 at the end-points of the
domain. In this section we describe different types of behaviour allowed to
the weight. For defining these types we shall work with the neighbourhood
[0, d] (0 < d < 00) of the point °and the neighbourhood Cd, 00) (d < 00)
of the point 00 as representatives of the cases of finite and infinite
end-points, respectively. The results for the other end-points can be derived
mutatis mutandis.

In the neighbourhood [0, d] of the end-point °w will satisfy one of the
following three types of conditions.

Type 1. w is non-decreasing, v is strictly increasing in [0, d], and
v(o) = limx~o v(x) = O.

The weights w(x)=x~llogxIP (a=O or O<a< 1 and f3E~ or a= 1 and
f3 > 0) are of this type. In this case u is increasing, u(0) = 0, and
O";;w(O)<oo.
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For O<t~v(d) we set

t/J(t, x) = tw(x + u(t))

assuming that w(x) = wed) for x> d if w is not defined in [d,2d].

191

(3.1)

PROPERTY 1.1. For A> 1 we have w(Ax) < AW(X), v(Ax; ~ ),v(x), and
u(h) > AU(X).

Proof AW(X) = Axlv(Ax) > AX/V(AX) = w(Ax). The same for v. We set
y = u(x), x = v(y). Then v(u(Ax)) = Ax = AV(Y) >v(}.y) = v(Au(x)) and hence
U(AX) >AU(X). I

PROPERTY 1.2. Let A. ~! and Ix - yl ~ N(t, x I. Then:

(a) ljt(t, x) ~ 2t/J(t, y) and t/J(t, y) ~ 1.5. t/J(t, x):

(b) y > x/4 for x> 2u(t).

Proof For z>u(t) we have z=v(z)w(z»v(u(t))w(z)=tlr(z).
Therefore t/JU, x) = tw(x + u(t)) ~ x + u(t) and Ix - .vi ~ (x + u(t»)/2. Using
Property 1.1 we get

t/J(t, y) = tw( y + u(t)) ~ tw( 1.5 . (x + u( t))) < 1.5 . t/J(t, x)

and

t/J( t, x) = tw(x + u( t)) ~ tII'(2( Y + lI( t))) < N( t, y).

If x> 2uU) then y >x - (x + u(t))/2 >x/4. I

Sometimes we shall require If to satisfy the additional conditions

or

for every x E (0, d], (3.2 ~

u(A.x) ~ cCA) u(x) for any x>O, ).> 1, Ax~d.

One can show that conditions (3.2) and (3.3) are equivalent; that is, ,,'
satisfies (3.2) iff it satisfies (3.3), but we shall not make use of this.

PROPERTY 1.3. Let Je> 1 and let II' satisfy (3.3). Then

A.t/Ju, x):::; t/J(J.t, x) ~ c(Je} t/JU, x)

and

c(A) t/J(t, x) ~ t/J(t/A, x) ~ l/f(t, x)/L
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Proof We have u(t)::::;U(At), w(x+u(t))::::;W(X+U(At)), and hence
At/J(t, x)::::; t/J(At, x). From (3.3) and Property 1.1 we get t/J(At, x) =
AtW(X + U(At)) ::::; AtW(X + c(A) u(t)) ::::; AtW(C(A)(X + u(t))) ::::; C(A)
tw(x+u(t)) = C(A)t/J(t,X). Making the substitution t-H/A in the proved
inequalities we obtain the second ones. I

Type 2. w is non-increasing and unbounded in (0, d] and satisfies the
inequality

w(x)::::; A 2 w(2x) for every x E(0, d/2l (3.4 )

We define t/J again by (3.1). E.g., the weights w(x) = x" Ilog xiii (e< < 0 and
f3 ErRor e< = 0 and f3 > 0) are of this type. Now t/J(t, .) is non-increasing, u
and v are strictly increasing, v(O) = u(O) = 0, and w(x) tends to infinity
when x tends to O. The properties corresponding to these from Type 1 are

PROPERTY 2.1. We have V(AX) ;:dv(x) and u(h)::::; AU(X) for A> 1.

The proof is similar to the proof of Property 1.1.

PROPERTY 2.2. Let Ix - yl ::::; N(t, x). Then t/J(t, x)::::; (A 2 )' t/J(t, y) for
r~log2(A+1).

Proof We have y<X+At/J(t,X) = X+AtW(X+U(t)) ::::; X+AtH'(U(t))
= X+AU(t). Therefore y+u(t)::::;2 r(x+u(t)) and (3.2) gives

t/J(t, x) = tw(x + u(t))::::; (Azrtw(Y(x + u(t)))

::::;(Azrtw(y+u(t))=(Az)'t/J(t,y). I

PROPERTY 2.3. For A> 1 there is f3 = f3(A z, A) > 1 such that

At/J(t, x)::::; t/J(f3At, x)::::; Af3t/J(t, x)

and

t/J( t, x )/(f3A)::::; t/J(t/(f3A), x) ::::; t/J(t, x)/A.

Proof First we shall establish:
For every A> 1 there exists e< = e«A, Az) > 1 such that

AU(t)::::; u(iXAt). (3.5)

From (3.4) we get v(2x) = 2xjw(2x)::::; 2A 2 xjw(x) = 2A 2 v(x). Set
r = [logu + 1] and e< = 2(A2Y. Then V(AX)::::; v(2 rx)::::; (2A 2)'v(x)::::;
2(A2)'AV(X) = e<AV(X). Replacing x by u(t) and using the fact that u is
increasing we get (3.5).

Let f3 = e<A z where e< is the constant from (3.5) for the multiplier AA 2, i.e.,
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:x=:xti,A2,A2» 1. If X~U({3At) then (3.4) gives i.l{iU,x) AfIV(X+U(t))
:::;; IctH'(X) :::;; A 2AtW(2x) :::;; A 2 AtH'(X +U(f3At)) :::;; l{i{{3At, x)jy. :::;; l/J(fJA!, xl,
If o<X:::;;U({3At) then from (3.4) and (3.5) we obtain

Al{i(r, x) = A!lI'(X + u(t)):::;; titll'(u(t)) = AU( t):::;; uWh )/A 2

= {3At\l'(U(fJAt))/A 2 :::;; {3Atw(2u(fJAt)

:::;; fJlctW(X + u(fJh)) = l{i({3At, x),

Moreover we have x + u(t):::;; x + U(At) and Al{i(t, x) = Atll'(x + u(t)) ~
AM(x + U(At)) = ljJ(h x) and the first chain of inequalities is proved. The
second chain is derived by the first one using the substitution t ~ t/(,BA I, I

TJpe 3. v is non-increasing in (0, d] and I\' satisfies the inequality
(to = t'(dli2)

Ir(x):::;; A} \I'(x- foW(X)) for every x E (0, dl (3.6)

E.g., the weights w(x) = x a Ilog xl fl (ac> 1 and fJ E IR or C( = 1 and ~ ~ 0)
and the weights w(x)=exp(-x-~) (a>O) are of this type. Now l!' is
strictly increasing, \1'(0) = O. We define ljJ by

ljJ(t, x) = tIV(X). (3.7)

PROPERTY 3.2. Let 0 < t:::;; to, 0 <).:::;; to/t, x, yEO (0, d], and Ix - yi :::;;
Al/J(t, x). Then ljJ(t, x) ~ A}ljJ(t, y).

Proof We have y>x-),tw(x)~x-tow(x). Using (3.6) we get
ljJ(t,x)~A}[I\'(x--tow(x))~A}ljJ(t,y). I

In the neighbourhood Cd, oc) of the end-poin~ rx. ]V will satisfy the
following condition:

Type 4. If is monotone, v is non-decreasing in Cd, :c), and in addition
II' satisfies the inequality (to=v(d)/2)

w(x):::;; A 4 11"(x + to\l'(x)) for every x E [d, ':f:.) (3.8 )

if w is decreasing.

For convenience we set .4 4 = 2 if Il' is increasing,
E.g., the weights I'I"( x) = x'(log x)fl (ac < 1 and f3 E IR or Q( = 1 and f3:::;; 0)

and the weights 11'(x) = exp( - x~) (rx > 0) are of this type. We define t/J by
(3.7).

PROPERTY 4.1. For A> 1 we have \I'(Ax) ~ i.w(x).

Proof AII"(X) = AX/v{X) ~ h/V(AX) = II"(AX). I
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PROPERTY 4.2. Let 0 < t ~ to, 0 < A~ to/t, x, Y E Cd, co), and Ix - yl ~
At/l(t, x). Then t/l(t, x) ~ A4t/l(t, y).

Proof Let w be increasing. Then y? x - At/l( t, x) ? x - to w(x) =
(2-v(d)/v(x))x/2?x/2 and using Property 4.1 we get t/l(t,x)=tw(x)~

tw(2y) ~ 2tw(y) = 2t/l(t, y).
Let II' be decreasing. Then y~X+At/l(t,X)~x+tow(x)and using (3.8)

we get W(X)~A4W(X+tow(x))~A4W(Y)· I
The weight II' will satisfy the following global condition:

There exist As? 1, d;, a < d3 < d l < d2< d4< b, and weights WI
in [a, dI] and H'2 in [d2, b] of some of the types described
above such that l/As~w(x)/wdx)~As for xE[a,d l ],

I/As~ll'(x)/w2(x)~As for xE[d2.b], and I/A5~w(x)~A5

for XE [d3 , d4 ]. (3.9)

With Vj' uj , and t/lj we denote the functions associated with the weight
Wj' j = 1, 2. Then we set

l
(2k)-It/ldt, x)

!J!(t,x)= (2k)-1t/l2(t,X)

linear and continuous

for xE[a,d l ];

for x E [d2 , b] ;

In [dl, d2 ].

(3.10)

It follows from (3.10) that t/l(t, x) is equivalent to t for XE [d3 , d4 ]. The
multiplier (2k) -I is chosen so-that we shall be able to apply Property 1.2 in
the next section. This multiplier is of importance only when w being of
Type 1 does not satisfy (3.2). In the other cases we shall consider functions
t/l equivalent to !J!, i.e., t/l satisfying:

There is A> 1 such that I/A ~ !J!U, x)It/J(t, x) ~ A for every
XE [a, b] and the weights WI or W 2 from (3.9) satisfy (3.2) and
(3.3) provided they are of Type 1. (3.11)

This condition will allow us to give an appropriate form to the argument
of the r modulus in (1.4) (see Corollaries 5.1, 5.2, 5.3, 5.4, and 5.5).

4. INEQUALITIES FOR MODULI OF DIFFERENTIABLE FUNCTIONS

First two theorems concern the usual moduli of smoothness. The author
was not able to find any references on similar results. Applying these
statements we derive a proof of the first inequality in (1.4).
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THEOREM 4.1. Let II' be of Type 1 in [0, d] satisfring (3.2). Then

wk(f; tlp:;;;'c(kl AtVk(t)iiwkjlkJllp.

Proof From (2.9) and (2.8) we have

r
kh

1,1~f(x)1 :;;;, c(k) yk- I If(k)(x + y)1 dy
'0

-kh
:;;;,c(k) I yk-IW-k(y) wk(x+ y)lpk)(x+ )'ll dy

'0

Using this inequality, (3.2), and Property 1.1 we obtain

f
kh

II,1kf(x)11 :;;;,c(k) vk(r) v-11Iwk (.+ 1')f1k)/·+v)11 _ drI I, p . • . \. p[O.d kh] .
o

-kh
:< c(k) I vk

(' r) V-I dr II'wkf(klil -
'" ••• I pLO.d]

'0

This proves the theorem because of the monotonicity of v. I

195

THEOREM 4.2. For 1:;;;' P < 00, 0< h:;;;, d, and f E W~,IOC[O, d] we hat'e

II ,1~f(x) II p[O.d - kh]

:;;;, c(k)p {( I/pk)Lr)IP dy + h kp td
-

h
Ijlk)(y)! p dy

d }t p
+ f I(d- y)kjlkl(Yll pdy .

d-h

Proof From (2.9) and (2.8) we have

1,1~f(x)1

:;;;'c(k) eh
/-llf(k)(x+ y)1 dy:;;;,c(k) r+ kh

yk-!lpkl(y)1 dy
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Therefore

·h

lILlZf(x)1 P dx

K. G. IVANOV

Irk+llh II':;;; c(k)PpP!P' ykP-l p IPkJ(y)1 P - x-1ip' dx dy
o 0

Changing the variables x --+ d - x and h --+ -h in (4.1) we obtain

r- kh
ILlZf(xW dx:;;; c(kjPpP [h kP r- h

IPk)(y)! Pdy
d-rk+llh d-(k+l)h

(4.1 )

Moreover we have

f
d-rk+lJh

ILlZf(x)1 Pdx
h

Combining (4.1), (4.2), and (4.3) we obtain the statement of the
theorem. I

COROLLARY 4.1. If 1:;;; p < (J) and II' is of Type 1 in [0, d] or w is
symmetric in [0, d] and is of Type 1 in [0, d/2] then

wk(f; t)p:;;; c(k) pvk(t) Ilwkpk)ll p.

In comparison with Theorem 4.1 we do not require w to satisfy (3.2) in
Corollary 4.1 but we have to pay for this by excluding the case p = 00.

LEMMA 4.1. Let 11' be of Type i, i= 1, 2, 3, 4, and let w satisfy (3.2) being
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of Type 1, 0 < t ~ C( 1\'), 'I = 1/(2k), [ex, [1] = [0, d] if II" is not of Type 4 and
[7., f3] = [d, ,x ) if 11' is of Type 4. Then

Tk(g;'Il/t(t))p.p[x.Ii]~c(k,\\·)llgllp[x.li] if gELp(rx,PJ (4.41

Tk(g;IJl/t\l))p,p[x.Ii]~c(k,w)tklll\'kg(k)llp[x.fJ] ~r gEW~(W). (4.5)

Aforeover rhe statement of the lemma is true for p < ,x' and arbitrary weights
of Type 1 but with constant c(k, w, p) in (4.5).

Proof. From Propertiesi.2 U=1,2,3,4) we get Ix-yl~e(w)ljJ(t,y'l

provided x, yE [ex, fJ] and Ix- YI ~1Jkl/t(t. xl. Therefore for every
.v E [ex, fI] we have

meas{xE [ex, 11]: Ix-.vl ~llkl/t(t, xl} ~c(w) Vf(t, y). (4.6)

From (2.6), Properties i.2, and (4.6) we obtain

~ [J: Ig(x)1 p dxrp

[

-Ii f~kljJ(t,xi 11.'P
+ elk) j 2/t./J(t, x) Ig(x + 2"W dz dx

x -~kljJl~x) J

~ II gllp + elk, w) [1" rk\f!(f,X) Ig(x + zW!l/t(t, x +::) dz dXJI'P
x -'lkljJ(t. <)

~ II gllp + elk, w) [J: Ig( y)1 pdJT p= elk, 1\') II gilp

which proves (4.4).
Reasoning as above and using (2.7) instead of (2.6) we get

'lAg; 1J!/J(t))p.p[x,li]

[f

li f~kljJ(t,X) JI:P
~ elk) l/tkp-l(t, x) Ig(x + z)iP dzdx

a -~kljJ(t,xl

From this inequality we obtain (4.4) when w is not of Type 1 because
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t/J( t, y) ::::; tW( y) in this case. Let w be of Type 1. We divide [0, d] into two
parts:

(4.7)

Let x E [4u(t), d] and Ix - yl ::::; ,/kt/J(t, x). From Property 1.2.b we have
y?x/4?u(t) and from Property 1.1 we get t/J(t,x)::::;tw(4y)::::;4tw(y).
Using (2.7), Property 1.2.a, and (4.6) we obtain

[f Wk(g, x; YJt/J(t, x))~ dXJliP
4u(l)

~ c(k) [f t/Jkp-l(t, x) rkljJ(I,X) Ig(k)(X + z)1 Pdz dxJliP
4u(t) -'lkljJ(t,x)

~ c(k, w) [f Ig(k)(y)1 p t/Jkp(t, y) dyJli
P

u(t)

(4.8)

For xE[0,4u(t)] from Property 1.1 we get u(t)~t/J(t,x)::::;tw(5u(t))<

5tw(u(t)) = 5u(t). Now (2.5) and Lemma 2.3 give

[(U(I) wk(g, x; '/t/J(t, x))~ dxJiP

~ 5 [(u(t) Wk(g, x; 5,/u(t))~dXJi
P

~ 5Tk(g; 5YJu(t))p,p[O,d]::::; c(k) Wk(g; u(t))p[O,d]' (4.9)

Now (4.5) follows from (4.7), (4.8), (4.9), and Theorem 4.1 if w satisfies
(3.2) or Corollary 4.1 otherwise. I

Now we are ready to prove the first inequality in (1.4).

THEOREM 4.3. Let w satisfy (3.9) in [a, b], let the weights WI and W 2

satisfy (3.2) being of Type 1, and let t/J satisfy (3.10) for 0< t ~ c(w). Then
for everyfELp[a, b] + W;(w) we ha~e

c(k, w) Tk(f; lJ!(t))p,p[a,bJ ~ K(tk, f; Lp[a, b], W;(w)). (4.10)

If WI or 11'2 does not satisfy (3.2) being of Type 1 then (4.10) ii true for
p < 00 with a constant depending also on p,
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Proof From (3.10) and Lemma 2.3 we get (11 = 1!(2k)
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'k(f: p(t))P,p\D)

~[r Wk(f,X;P(t,X))~dXrp

+ [r' Wk(f, x; p(t, x)): dxJl:P + [fb Wk(j, x; p(t, X))~ dxTP
~ .~ J

~ elk, w l{ 'k(f; rytlt 1(t) )P. p[a,d)] + 0h(f; t Ip[d;,d4]

+ 'k(f; 11t1t2(t))p,p[d4 .b]}· (4.11)

From (2.2) and Lemma 4.1 for any gE W~(\\') we have

'k(f; lTtltj(t))p.p[a,d3]

~ 'k(f - g; 'T tit 1(t))p.p[a.d)] + ,dg; '1 tit 1(t)p. p[a,d3J

~ elk, wl{ Ilf - gllp[a.b] + tk Ilwkg(k)llp[u,b]}'

Therefore

In the same manner we get

From (1.3) and (3.9) we obtain

Wk(f; t)p[d3. d4] ~ elk) K(tk,f; L p [d3 , d4 ], W~(l»)

~e(k,\\')K(t\f;Lp[a,bJ,W~(WI). (4.14)

Combining (4.11), (4.12), (4.13), and (4.14) we prove (4.10). I

The next example shows that (4.10) is not valid when p = c£ and that iI'

is an arbitrary weight of Type L

EXAMPLE. Let w(x)=x(1-1nx)I/(2kl,f(x)=(1-lnxl12 for XE[O, 1],

Then 'k(f; p(t)L.o, 00[0, 1] = 00 because f is monotone and unbounded but
ilwkj(k)llx, ~ elk) and therefore K(t\ f; C. W~(\t'») = O(tk).

MO·56.2-6
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5. A CHARACTERIZATION OF THE WEIGHTED K-FUNCTIONAL

In this section we prove the second inequality in (1.4) and complete the
characterization of the weighted K-functional. In order to do this we first
construct appropriate intermediate functions when w is of different types.

LEMMA 5.1. Let w be a weight of Type 1 in [0, d], 0< t ~ v(d) and°< IJ ~ 1/(2k). Then for every f E Lp[O, d] there exists g E W;( 1) such that
g(k)(X) =°for x E [0, '1ku(t)/3],

Ilf - gil p[O.d] ~ c(k) Tk(f; '1l/J( t» I. p[O,d]' (5.1)

lI('1k l/J(tWg(k) IIp[o,d] ~ c(k) Tk(f; 1Jl/J(t» I, pEa, d]' (5.2)

Proo! We set Yo = 0, Yj+ I = Yj + hj' hj = IJkl/J(t, Yj)/3, j = 0, 1, ;... There
exists n such that YIl < d ~ YIl + I because of hj ~ IJku(t )/3 > 0. We shall work
only with the points Yo, YI'"'' YIl+1 where we set YIl+I=d. From the
monotonicity of l/J(t, . ) and Property 1.2 we get

1~hj+dhj"(2,

1~ IJkl/J(t, x)/(3h) "( 2 for every x E [Yj, Yj + I].
(5.3 )

Let fl be the function from Section 2. We set flo(X) = l-/1«x - Yo)/h l ),
/1ix)=/1«x-}'j)/hj)[l-/1«x-Yj+d/hj+d] for j=1,2, ...,n-2 and
flll- I(X) = fl«X - YIl-I)/h ll - I )· Then L;~6 fleX) = 1 for every x E [0, d] and
the only functions flj which do not vanish in [Yj, Yj + I] are flo for j = 0,
flj-I and Jij for j= 1, 2, ..., n - 1, and /1"-1 for j= n.

We denote by Qj E H k _ I the polynomial of best algebraic L p

approximation of degree k-1 to f in the interval [Yj, Yj+2],
j=O, 1, ...,n-1. From (2.1), (5.3), Lemma 2.3, and (2.5) we get

Ilf - Qj llp[YjoYj+2]

,,; c(k) Wk(f; (hj + hj + d/k )p[»), »)+2J

"( c(k) Wk(f; 3hj /k)p[}'j, })+2] ~ c(k) Tk(f; 3h;lk)l,p[}),Y,+2]

"( c(k) Tk(f; 1/l/J(t»I,P[Yj'YJ+2]' (5.4)

We set

n-I

g(x) = I Ji)X) Q)x).
j~O

Now from (5.5) and (5.4) we get

(5.5)
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II
" - 1 liPIlf - gil ~[O,d1 = L Illf - Q)

I i~O p[O.d]

n - 1 "~-,--1

~ L j-J "If(x)-Q)x)IPdx
j= 0 "Y1

,,- 1 r" ,
~ e(k)P L _JT- Wk(f, X; l]ljIU, X))1 dx

j=O "'.\j
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(5.6)

So we have proved (5.1). It follows from (5.5) that gE C'''[O, d] and
glk'(X)=O for XE[Yo,Yl]U[Y",Yn+l]. Let XE[Yj,Yj+1J for some
j=1,2, ...,n-1. Then g(X)=Qi_l(X)+Il((x-y)/hj )¢>(x) where r/J=
Q,- Qj-l and therefore

k (k)k Ik) ,c Ik--r) r I (r)
Ilhjg IIp[Y''.'J+IJ'' r~o r 1111 II-x hi ,\1> IIp[)J.Yo+l]· (5.7 )

From Lemma 2.4 (or Markov's inequality) and (5.4) we obtain

hj 111>lr)ll p [YJYJ+l] ~ elk) 111>ll p [I"!"J+I]

~ c(k){ IIQJ - fllp[I:"'J+tJ + II Qj-l - fllp[Y"'J+tl}

~ elk) Tk(f; l]ljI(t)lt. p[ 1/-l.l,d' (5.8)

It follows from (5.7) and (5.8) that

Using (5.3) and (5.9) we get

II (1Ikljl(t) )kg1k'll ~[O.d]

= nf f.lH I('1k ljl(t, X))kglk)(x)IP dx
j=O oI Y1

~6kp nf hJp f\J+l !g(k)(xJIP dx
j = 0 J'J

~e(k)pnf f'J+1Wk(f,X;lll/!U,X))fdx
j=O "'Yj-l

~ e(k)PTk(f; '1lj1(t)lf,p[O.d]·

This completes the proof. I
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LEMMA 5.2. Let w be a weight of Type 2 in [0, d], 0 < t <. v(d), let A z be
the constant from (3.4), and let 0 < 11 < l/k. Then for every f E Lp[O, d] there
exists gE W;(l) such that g(k)(x)=Ofor XE [0, l}ku(t)/(l +A z)]'

Ilf - gllp[o,d] <. c(k, A z) ck(f; 11lj!(t))I,p[O,d]'

and

II (l1k lj!(t)kg(k)ll p[o,d] <.c(k, A z) cdf; 11lj!(t))/,p[O,d]'

Proof We set Yo=O, Yj+! = Yj+hj. h;=I/klj!(r, Yj)/(A z + 1),)=0,1, ....
From Property 2.2 we get

and

for every x E [Yj, Yi + I]. Now we proceed as in the proof of Lemma 5.1. I

LEMMA 5.3. Let w be a weight of Type 3 in [0, d], 0 < t <. to = v(d)/2,
let A 3 be the constant from (3.6), and let 0 < 11 <. to/(kt). Then for every
fELp[O, d] + W;(w) there exists gE W;(w) such that

Ilf - gllp[o,d] <. c(k, A 3 ) ck(f; 11lj!(t))I,p[o.d]

and

II (l1k lj!(t))kg (k)ll p[o,d] <. c(k, A 3 ) 'k(f; 11lj!(t))I,P[O,d]'

Proof We set Yo = d, Y}+! = Y} - hi' h} = I1klj!(t, ))/(1 + A 3 ) =
I1ktW( y)/( 1+ A 3)' In this case we have h} <. to w( Yj) = v(d) yj(2v( Y})) <. Jj2
and therefore y} is well defined for every natural). Let y E (0, d) and
»(d-y)(l+Az)/(l1ktw(y)). Then yJ<y and hence limYj=O when
) --. 00. From Property 3.2 we have

and

for every x E [Yj + I' Yj]. Now we proceed as in the proof of Lemma 5.1 but
the summation is to infinity. I

LEMMA 5.4. Let w be a weight of Type 4 in [d, 00), 0 < t <. to = v(d )/2,
let A 4 be the constant from (3.8), and let 0 < I] <. to/(kt). Then for every
fELp[d, 00)+ W;(w) there exists gE W;(w) such that

Ilf - gllp[d,x;) <. c(k, A 4 ) ck(f; I]lj!(t) )1, p[d,Xl)

and
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Proof We set Yo=d, Yj+1 = Yj+hj , hi=t/kljJ(t, Yj)/O +A 4 ). As in the
proof of Lemma 5.3 we get Yj -+ Cf) when j -+YJ. From Property 4.2 we
obtain

and

for every x E [Yj' Yj + I J, where e = 1 if w is non-increasing and B = -1 if II'

is non-decreasing. Now we proceed as in the proof of Lemma 5,1. I
Let us remark that all four lemmas can be applied for /EL p + ~V;{jl")

because L p + W;(w) = L p when \l' is of Type 1 or 2.

THEOREM 5.1. Let Ii' satish' (3.9), let ljJ be given by (3.10), and let
0< t:( c( 11'). Then for every f E Lp[a, bJ+ fV~(w) there is g E W;( w) sueh
that g(kl(X) = 0 in a neighbourhood of the left end-point a with length
e( IV) U I(t) provided WI is of Types 1 or 2, g\kJ( x) = 0 in a neighbourhood of
the right end-point b with length c(w) u2 {t) provided 1\'2 is of Types 1 or L,
and

Proof We shall use Lemmas 5.1, i=I,2,3,4, with f/=1/(2k). Let gl
and g2 be the functions from Lemmas 5.1 for the weights WI and W 2 in the
intervals [a, dlJ and [d2 , bJ, respectively. Let g3 be the function from
Lemma 5.1 for the weight \I' = 1 in the interval [d3 , d4 J (we can also use
the modify Steklov function for fin this interval as g3)' We set

g(X) = f1((x - d3)/(dl - d3))[1- f1((x - d2 )/(d4 - d2 ))] g3(X)

+ [1 - fl( (x - d3)/(dl - d3))J gl(x) + ,u( (x - d2 )/(d", - d2 )) g2(X),

(5.l0)

From Lemmas 5.1 and (5.10) we get

Ilf - gllp[a,b]:( lif - glllp[a.dt] + Ilf - g31I p[d].d"J + lif - g21Ip[d2.b]

:( e(k, w) lk(f; tf!(t)lt.p[d]

and g(k) vanishes in suitable neighbourhoods of the end-points. Therefore

(5.11 )

Indeed rw(x):( ljJ(t, x) when IV is not of Type 2 and for It' of Type 2 (in
[0, dJ) and x>Au(t) using (3.4) we get

tw(x):( c(w, A) tw(x + x/A):( e(\I', }_) tw(x + u(t)):( e(li', A) ljJ(t, xl.



204 K. G. IVANOV

From (5.10), Lemma 2.4, (3.10), (5.11), and Lemmas 5.i we get

II H,kg1klll p[a,b]

~ c(k, w) {llwl giklllp[a,dt] + Ilw~ g&k)ll p[d2,b] + Ilg Ck1 1I p[d].d4]

+ ~ II (j) - (J)II + ~ II (j) - (J)II }/:0 gI g3 p[d],dt] /::0 g3 g2 P[d4,d2]

~ c(k, w){ II wI g\k)11 p[a,dtJ + II w~ g~k)llp[d2.b] + II g~klllp[d],d4]

+ Ilgl -fllp[d],dt] + IIg3 - fll p[d],d4] + IIg2 - fll p[d2,d4]}

~ c(k, 11') t-kTk(f; Ift(t))I,p[a,b]

which proves the theorem. I
Combining Theorem 3.4, (1.1), and Theorem 5.1 we obtain

THEOREM 5.2. Let II' satisfy (3.9) in [a,b], let the weights WI and 11'2

satisfy (3.2) being of Type 1, and let !/J satisfy (3.10) for 0 < t:( c(w). Then
for every f E Lp[a, b] + W;(w) we ha~e

c(k, w) Tk(f; Ift(t))p,p[a,b] ~ K(t\ f; Lp[a, b], W;(w))

~ c(k, 11') Tk(f; Ift(t))l.p[a,b]'

If WI or W 2 does not satisfy (3.2) being of Type 1 then the first inequality
above is true for p < 00 with constant depending also on p.

In order to allow more flexibility in the choice of the argument ftinction
1ft of T moduli in the above theorem we shall prove

THEOREM 5.3. Let W satisfy (3.9) in [a, b] and let !/J satisfy (3.11) for
0< t ~ c(w). Then for every f E Lp[a, b] + W;(w) we have

c(k, 11') Tk(f; !/J(t))p,p[a,b]:( K(t\ f; Lp[a, b], W;(w))

~ c(k, 11') Tk(f; !/J(t))I,p[a,b]' (5.12)

Proof In view of the inequality

Tk(f; !/J(t))p.p[a.b] ~ Tk(f; !/J(t))p,p[a,d]]

+ Tk(f; !/J(t))P,p[d],d4] + TJf; !/J(t))P,P[d4,b] (5.13)

for proving the first inequality in (5.12) it is enough to estimate every term
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(5.15 )

in the right-hand side of (5.13) with the K-functional in (5.12). From (3.11),
(2.5), Lemma 2.3, and (1.3) we get

Tk(f; t/J(t))p,P[d3,d4]

~ c(k, w) Tk(f; c(k, w)t)p,p[d3,d4]

~ c(k, 1\') 0h(f; c(k, W)r)p[d3. d4] ~ c(k, 1\') Wk(f; t)p[d,.d4]

~ c(k, w) K(tk,f; L p[d3, d4 ], W~(1)) ~ c(k, w) K<[t\ f; Lp[a, b], rVZ(w)).

In view of the symmetry of [a, d3 ] and [d4 , b] we shall only consider
the modulus in the first interval. From (3.11) we have t/J(t,x)~

At/J 1(t, x)/(2k) ~ A 2t/J(t, xl and now (2.5) gives

Tk(f; t/J(t))P.p[u,dJ] ~A2Tk(f; At/Jl(t)/(2k))p.p[a,dJJ' (5.14)

If h'l is of Type 3 or 4 then At/Jt(t)=t/Jl(At). If WI is of Type lor 2
then Property 1.3 or 2.3 with A= A gives CB = 1 for Wi of Type 1)
At/Jl(t,X)/(2k)~t/Jl({3At,x)/(2k)~c(A)t/J[(t,x)/(2k), Now (2.5) gives

Tk(f; At/J [(t)/(2k))p, p[a.dJ]

~ c(A) Tk(f; (t/J[({3At)/(2k))p,p[a,d3]'

Now from (5.14), (5.15), Theorem 4.3, and (1.1) we get

Tk(f; t/J(t))p,p[a.d]] ~ ciA) Tk(f; t/Jl({3At)/(2k))p,PLa,d3]

~ c(k, w) K(({3At)k, f; Lp[a, d3 J, W~(w))

~c(k, w) K(tk,f; Lla, b], W~(l\'))

which completes the proof of the first inequality in (5.12). For the proof of
the second inequality in (5.12) we use the same statements arguing in
reverse order. I

Now we shall derive corollaries from Theorem 5.3 for the weights
mentioned in Section 1.

Let w(x)=J(.x--x2
), XE[O, 1]. We can choose dt =!, d2=~' d3=~'

d4 =~, H'[(x) = y~, and W2(X) = .J~. Then u 1(t) =!2 and t/J l(t, x) =
/ .., .,

t y' (x + t-). Therefore we can choose "'(t, x) = tl'-(.'() ~ tL.

COROLLARY 5.1. For t/J( t, x) = t.J' (x - x 2
) + t 2 we have

c(k, 11') Tk(f; t/J(t) )p, p[O, t] ~ K(tk, f; Lp[O, 1J, W;(Jc, - x 2
))

~ c(k, w) Tk(f; !f;(t))P.p[O,t).
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Reasoning in the same manner we get

COROLLARY 5.2. For ljJ(t, x) = tJ(l- x 2)+ t2 we have

c(k, 11') ,Af; 1jJ(t)p,p[-I,I] ~ K(tk, f; Lp[ -1, 1], W~(J(1-x2)))

~ c(k, 11') 'k(f; 1jJ(t»P.P[-I, I]'

COROLLARY 5.3. For ljJ(t, x) =t~ + t2 we have

c(k, 11') 'k(f; 1jJ(t))p,p[O,,,,) ~ K(tk, f; Lp[O, (0), W~C/~))

~ c(k, 11') 'k(f; ljJ(t»)p,p[O,OO)'

COROLLARY 5.4. For ljJ(t, x) = tJ(x + x 2)+ t2 we have

c(k, 11') ,Af; 1jJ(t»p, p[O,OO l ~ K(tk, f; Lp[O, (0), W~(J(x+ x 2)))

~ c(k, w) 'k(f; ljJ(t»p,p[O,XJ)'

At the end we shall derive a result having applications in best
approximation by algebraic polynomials and approximation by operators.
Let w be symmetry in [0, 1] (i.e., 11'( 1- x) = w(x») or let II' be a weight in
[0, (0) and in both cases let WI from (3.9) be of Type 1 in [0, D satisfying
(3.2). Let us denote by u the function u I corresponding to WI . We set

THEOREM 5.4. Under the above assumption we have

K(tk, f) ~ K*(tk, f) ~ c(k, w) K(tk, f). (5.16 )

Proof The first inequality in (5.16) follows directly from the definitions.
Let g be the function from Theorem 5.1 corresponding to f We have

U(t)k II g(klil p~ c(k, w) tk II wkglkJllp

because g(k) =° in [0, c( w) u( t)]. Combining this inequality with
Theorems 5.1 and 5.2 and (2.4) we get

K*(tk, f) ~ Ilf - gllp + tk II wkglklilp + U(t)k Ilg(k)ll p

~ c(k, w){ Ilf - gllp + tk Ilwkg(klll p}

~ c(k, w) 'k(f; lJ!(t))I,p

~ c(k, w) K(tk
, f). I
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As a corollary of the last theorem one can mention the inequalities

. f{ II f II k II ( 2 )k.'2 ik)' ) I'In . -g p[O.1]+t x-x g (x Ip[O,l]

+ t 2k llg(k)11 'g\p[O.I] . )

:::; c(k) inf{ Ilf - gil piO.l] + t k II (x - x 2
)k2g l

k'(X) IIp[o.l] : g}

and

6. PROPERTIES OF THE MODULI
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In this section we derive several properties of the moduli following from
their equivalence with the weighted K-functional.

THEOREM 6.1. Let t/J satisfy (3.11) for some w satisj)-ing (3.9),
0< t :::; c( Ii') and 1 :::; q :::; r :::; p. Then

Proof The statement is an immediate consequence of (2.4) and
Theorem 5.3. I

In other words all moduli r k are equivalent to one another when the
index of the local modulus q runs between 1 and p. It should be mentioned
that the moduli corresponding to different q's, q ~ p, are not equivalent.

Another consequence of Theorem 5.3 is the quasi-monotonicity of the
moduli with respect of \\' and t, i.e.,

THEOREM 6.2. Let t/J and If; be connected by (3.11) with \\' and It'" respec
tively, where the weights satisfy (3.9). If \1':::; CIt' then

THEOREM 6.3. Let t/J satisfy (3.11) for some IV satisfving (3.9),
o< t:::; c( IV) and f E L p + w;( IV). Then there is a nondecreasing fimetion of t
(for example the weighted K-functional) which is equivalent to rdf; t/J(t))p,p'

The following theorem is an analog of the well-known property of the
moduli of smoothness wk(f; At)p:::; c(k) Akwk(f; tIp'
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THEOREM 6.4. Let t/J satisfv (3.11)for some W satisfying (3.9), A> 1 and
o< At ~ c( w). Then

Lk(f; t/J(At))p,p ~ c(k, tv) AkLk(f; t/J(t))p,p.

The proof follows from Theorem 5.3 and the trivial K-functional
property K(At, f) ~ AK(t, f) for A> 1.

At the end we give formuli for calculating the magnitude of the moduli of
locally differentiable functions. By analogy with Theorem 4.2 for p < 00, It'

satisfying (3.9), WI and Wz of Type 1 or 2, and t/J given by (3.11) we have

For p = 00, w satisfying (3.9), and t/J given by (3.11) we have

Lk(f; t/J (t)) 00, 00[0, I]

~c(k, w){wk(f; ul(t))00[0,CU1(t)]

+ tk sup{IW(y)kf(k)(Y)I: yE [UI(t), 1- uz(t)]}

+ wk(f; uz(t))00[I-U2(c),I]}

(6.1 )

(6.2)

and we can use Theorem 4.2 for evaluating the moduli of smoothness in
this formula.

Using (6.1) and (6.2) for w(x)=x~, -00 <0:< 1, f(x)=x P, /3> -lip,
o< x < 1, we have

if /3+1Ip«1-0:)k;

if fJ + lip = (1- o:)k;

if fJ+1Ip>(1-0:)k.

In all cases above except fJ = 0, 1, ..., k - 1, the r modulus is actually
equivalent to the quantity from the right-hand side because all finite
differences of f of order k have one and the same sign.
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Let us denote with B~'''(\\') the interpolation space obtained by the real
s/'k. q interpolation between the spaces L p and W;(lI'). i.e.,

B~·q(l) are the usual homogeneous Besov spaces and so B~·q(lr) may be
called weighted Besov spaces. The aim of this section is to establish, when
possible, proximate, embedding results of the type B~,·q(wI) C B~2o'I( H·z).

For simplicity we deal only with weights of Types 1, 2, and 3 in
[a, b] = [0, 1] in this section. Let \1'1 and H'z be not equivalent and let
H' = \l'lI/lt'z be non-decreasing. Then obviously

and hence B~,q(\\,z) c B~·q(\I'd.

Now we shall invert the direction of the inequality in (7.1) changing the
argument of one of the K-functionals. We have w(o) = 0 because WI and liz

are not equivalent. Let \\'1 and \l'z be of Type 1 or 2 (for WI of Type 3 see
Example 2), let ll'l satisfy (3.2) being of Type 1, and let v;, uj be the
functions associated with Wi (j= 1, 2). We set

(7.2)

THEOREM 7.1. Under the above assumptions we have

K z = K(tk,f; L p , W;( wz)):S:; elk, WI. It'z) K(N(t)k, f; L p , W;{ wd)

=elk. WI' wz) K I ·

Proof It follows from (7.2) that uI(N(t)) = uz(t). Let g be the function
from Lemmas 5.1 or 5.2 corresponding to f, \I'" and Nt t) instead of It' and
f. Then we have

g'k)(X)=O for XE[O,6U z(t)] (s=e(w l )); (7.3)

Ilf - gllp[o.l] :s:; elk, 1t'1) Lk(f; \h (N(t)))l, p[o.l]; (74)

Illfl(N(t))kg(k)llp[o.l] :S:;e(k, wd T,,(f; lfl(N(t)))/,p[O,1]' (7.5)

where 2klfl(N(t), x) = N(t) \l'1(X + ul(N(t))) = N(t) wI(x + uz(t))·
Let ). ~ 1. From Property 1.1 and (3.4) we have \t'1().X):S:; AW1(x) or

\\' I(Ax):S:; h' dx) when IV I is of Type 1 or 2 and Wz(AX) ~ \l'z(x) and \t'z().x) ~
e(A. It'z) wz(x) when II"z is of Type 1 or 2. Therefore w(),x)::S; e(le, IVz) w(x)
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and for every x>cul(t) we have (2=max{l, lie}) w(X)~W(CU1(t))~

w(ul (t)/2) ~ c(w I , wl ) W(Ul(t)) and w(ul(t)) = WI(U2(t))/W2(U2(t)) =
V2(Ul (t))lvdul (t)) = tIN(t). Therefore

for X>CU1(t).

Combining (7.3), (7.5), and the above inequality we get

tk Ilw~ g(k)llp[O.I] ~ c(w I , Wl) N(t)k IIw1 g(kJllp[O.I]

~c(k, WI' wl)IIr/JI(N(t))kg(kJllp[O,I]' (7.6)

Now from (1.1), (7.4), (7.5), (7.6), and Theorem 4.3 applied for WI and
N(t) instead of wand t we obtain

K l ~ III - gllp + tk II w~ g(k)ll p ~ c(k, WI' 11'2) 'kU; tJ! I (N(t)))l, p

~c(k, WI> w2)KI · I

COROLLARY 7.1. Let - 00 < a < P< 1 and let (J = (1- P)/(1- a). Then

K(t\ I; L p, W;(x IX )) ~ c(k, IX, P) K(tk(J, I; L p, Wp(x fJ )).

Proof We have wI(t)=tfJ, VI(t)=t l - fJ , wl(t)=t IX, V2(t)=t I - IX,
Ul(t)=tl'(I-IXJ, and N(t)=t(J. Now we obtain the corollary from
Theorem 7.1. I

Combining (7.1) with Corollary 7.1 we obtain

COROLLARY 7.2. Let - 00 < IX < P< I and let (J = s( I - P}/( 1 - IX). Then

Bs (XIX) c Bs (x fJ ) C B(J (·x IX ).
~q ~q ~q

EXAMPLE 1. For fixed a, P, and p the embeddings in Corollary 7.2 can
not be improved in terms of Besov spaces. We shall give the examples only
for the case p = q = 00. Let 0 < y < 1 and let/(x) = (1- xY Then from (6.2)
we get that the, moduli for both weights are equivalent to tY• This shows
that the first embedding is sharp. Now let 0 < I' < 1, k( 1- P) > y, and
I(x) = x"'. Then from (6.2) we get that, moduli for the weights XIX and x f3

are equivalent to ty/(I- IX) and t1'/(1- fJ), respectively; i.e., the second
embedding cannot be improved.

EXAMPLE 2. From K(t\ I; L p, W;(w I )) = O(tk) and WI of Type 3 it
does not follow that K(tk, I; L p, W;(Wl)) < 00. Let/dx) = x-\ wI(x) = Xl.
Then K(tk,f;L"", W~)H'd)~tkllwt/i:k)IIXJ=c(k)tk but 'kUk;tWl)XJ,:xo
= 00 provided w 2(x) x- l --+ 00 when x --+ o.
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