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The goal of this paper is to prove the equivalence of properly defined
moduli of functions and the Peetre K-functional K(*, f}=inf{| f— g| »F
*IWrg® . g} for a wide class of weights w. The paper continues the
investigations of Ditzian [3] and Totik [12] and shows that the moduli
used by both authors are in many cases equivalent to the moduli
introduced in [7]. Proximate inequalities between the K-functionals for
different weights are derived.

1. INTRODUCTION

We deal with functions defined on the (finite or infinite) interval [g, 51
Let Lpfa b7 (1< p< o) be the set of all classes of measurable functions
for which

b ) Lp
171 = 1 botar =( ]| 110017 5] <,

let C[a, b be the set of all continuous functions in [4, b1 with a norm

LT e =1 o oy = sup{f{x}: x e [a 6]},

and let Wi(w) (1< p< oo, k natural) be the set of all functions which
are locally absolutely continuous together with g, .., g% ! and
|| W¥g®||, < oo, where the weight w is continuous and locally positive in
[a, b]. Here and throughout “locally” means that the property is fulfilled in
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every subinterval [a, b’] (a<a <b'<b) of the interval [a, b]. The
weighted Peetre K-functional for the function f is given by

K(t, f)=K(t", 5 L,, Wh(w))
=inf{||lf — gll, + “|w g™l ,,: g€ Wi(w)}. (L1)

Let us underline that we require fe L, + Wi(w), ie, /= f, + f, for some
foelL,, fi€ W";(w), and therefore fe L, ,.[a, b]; but in general f will not
belong to L,[a, b].

The weighted K-functional has proved useful in the characterization of
many approximating processes. More precisely, the equivalence

Hf_Mnf”p[a.b] = 0(’17'8)@1(([,(7 fa Lp[as b]’ W;:(W)) = O(Zm)a (12)
0 < o<k, holds true when:

(a) M, is the operator of best approximation in L,[a, b] by
algebraic polynomials of degree n, w(x)=./(b—x)(x—a), 1<p< o0,
p=ua, natural k;

(b) M,f are Bernstein polynomials, [a,b]=[0,1], w(x)=
JVix= x?), p= o0, f=0/2, k=2 (Berens and Lorentz [1], Ditzian [4]);

(¢) M,f are Kantorovich polynomials, [a,b]=1[0,1], w(x)=
JV(x—x?), 1< p<L oo, f=0/2, k=2 (Grundmann [6], Muller [10]);

(d) M, f are Szasz—Mirakjan (w(x) =\/;) or Baskakov (w(x)=
/ (x+x?)) operators, [a,b]=[0, ), p=oc0, f=a/2, k=2 (Totik [13]).

Many other examples for the validity of (1.2) with different M, can be
given.

But, when we want to calculate the degree of approximation of a given
function f, the equivalence (1.2) is not very useful—the class of functions
for which one can evaluate directly the infimum in (1.1) is rather narrow.
Fortunately, the K-functionals are equivalent to moduli of smoothness
which are easier to compute. In the case w(x)=1 the equivalence

c(k) wi(f31), <SK(" 5 L, WE1)) < clk) o f5 1), (1.3)
is well known, where the moduli of smoothness are given by

wf;t),=sup{|4;f1,:0<h<1}.

Equivalence (1.3) was extended with suitably defined moduli for different
types of weights by Ditzian [3] (w(x)=x% xe[0, 1], natural k) and
Totik [12] (k=2 and w twice locally differentiable). In this paper we use
other kinds of moduli to establish an analog of (1.3) for the K-functionals
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(1.1). These moduli were introduced by the author {7] to characterize the
best algebraic approximations and the approximations by Bernstein
polynomials.

During the preparation of the manuscript we learned that Ditzian and
Totik also generalized in [5] the results from [3] and [12]. Many
applications of the weighted Peetre K-functionals in approximation theory
are also given in [5].

The moduli we shall use (see [7, 8,97) are given by

t/\(f- l/I([))q,p: Hwk(/f; & lﬁ{l‘, ) )>I{Hp‘

where

wi(f x5 9(1, X)),

s x L
= vt [ o] asg<a)

—(hx)
il S x; (e, x)), = sup{|4} flx)]: [hl <41, x) ),

and A5f(x) = Y4 (=D (%) flx+ih) il x,x+khele b] and
A% f(x)=0 otherwise. Here ¥ is a continuous positive function of x in
[a, b] for any te (0, 1]

The main result of the paper is

C(k' W) Tk(f; ‘p(t))pp < K(Ika fa va wfﬁ("v))
Sl w) Tl (), s (1.4}

where the connection between w and  is given by (3.11).

The paper is organized as follows. In Section 3 we describe different
types of weights and give some of their properties. Inequalities for moduli
of differentiable functions and the proof of the first inequality in (1.4) are
given in Section 4. Following the ideas in [9] we construct appropriate
intermediate functions and complete the proof of (1.4) in Section 5. Various
kinds of properties of the moduli are derived in Section 6 as a consequence
of the previous resuits. Proximate inequalities between the K-functionals
corresponding to different weights are obtained in Section 7.

2. PRILIMINARIES

In the paper 1< p, g< o0, l/p+1/p'=1; A, t,p=const > 0; k is natural;
u is a fixed C*(R) function such that p(x)=0for x <0, p(x)=1for x> 1,
and 0 < u(x)<1 for 0<x<1; ¢ denotes a positive number which may be
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different at each occurence. The exact dependence of ¢ on the other
parameters is explicitly given. With 4, 4’, 4,,.. we denote constants
preserving their values throughout the paper.

Two functions, v and wu, are associated with the weight w in
neighbourhoods of the end-points ¢ and b. Let a and b be finite. Consider a
neighbourhood [a, d] of a or [d, b] of b; we denote v(x)=x/w(a+ x) for
x€(0,d—a] or v(x)=x/w(b—x) for xe(0, b—d], respectively. u is the
inverse function to v, i.e., u(v(x))=v(u(x))= x. In the case u will be used a
and b will be finite, v will be continuous, strictly monotone, and v(0)=0.
For a =0 the functions # and w are connected by

u(x) =v(u(x)) wlu(x)) = xw(u(x)).

For infinite end points we set v(x)=x/w(x) (b=00) or v(x)=x/w(—x)
(a= —o0) for xe[d, ), d>0.

Different forms of Minkowski’s and Holder’s inequalities will often be
used without explicit mention.

Let H, be the set of all algebraic polynomials of degree not greater than
r and let

En(f)p[a,b] = lnf{ ”f— Q”p[a,b] : Q € Hn}

denote the best algebraic approximation of fin L,[a, b].
The inequality

E, l(f)p(a.b] Sclk)wy(f; (b _a)/k)p[a, b1> (2.1)

known as Whitney’s theorem, was proved by H. Whitney [14] for p=
and fe C[a, b] and was extended by Y. A. Brudnii [2] for 1 < p< o0 and
feL,[a b] ([a, b] finite).

We assume the properties of w.(f; 1), are known.

LemMMA 2.1.
T+ & W)y , STl f50(2)g , + Tl 85 ¥ (1)), - (2.2)
T (ofs W(8))g, p = ol Te(f59(2)),.,  (reala). (2.3)
(¥, , <tlfiy(1),, if l<g<sr<oo. (24)

This lemma follows directly from the definition of T moduli.

LEMMA 2.2. If we assume that f(z)=0 in (2.6) or f*Nz)=0 in (2.7)
when z does not belong to [a, b], then
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ol fsxih), A0 (f x3hy),  if h<h,<A'hy, (2.5
Oulf X3 h)y S |f0)] A+ etk) {(zkhrl [ e e d} ae, (26}

if fFel [x—kh x+kh]. (27

Proof. We get (2.5) and (2.6) from the definition. To prove {2.7) ws
proceed as follows,

AN [ [ 1Ot it ) Wy de

<0

<ctiy [T gl d
0

. k= ., iy
<eclkyzFk— Ve U LS+ )9 d)'—l

¢

Y 4

and

~h
ol fows = @R [ (145G 1451

h ged
<elky(2h) 2 [T e
0 0
19— 1) dy d

rkh
<k )7 (S N+ e
0

RS =) [ 2kt dz dy

wk

kh
<clkyha2kn) " [ 1 Wi e dy

v —kh

Let us denote by N,(x) the normalized B-spline of degree X — ! with
nodes 0, 1, ..., k (see [11, pp. 134-137]). Then N, e C*"*R), N, {x)=0 for
x<O0orx=k, [*_ Nx)dx=1, and

]

O< N (x)<min{x* "' (k—x)*""}/(k—1)! for xe (0, k). {2.8)
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The connection between B-splines and finite differences is given by
x nkh
AESC =K [ Nelsfh) £+ ) . (29)

The following lemma and (2.4) show that moduli 7,(f; ¥(¢)),, can be
considered as a generalization of the moduli of smoothness w,(f;t),.

Lemma 23. Let felL,[a,b], ¥(t,x)=t for every xela,bl, and
0<t<(b—a)/(2k) if [a, b] is a finite interval. Then

Tl f30),, S0l f5 1), <c(k) 14 f5 1)1,

For a finite interval this is Theorem 3.1 in [87. The proof for an infinite
interval is similar but simpler.

The following embedding lemma will be extensively used (see Lemma 2.1
in [3] or Lemma 2.2 in [9]).

LeMMma 24. Let [a, bl be finite and ge W’;(l). Then for each
j=0,1, .. k we have

(b— a)j“ g(j)”p[a,b] <c(k)I g“p[a,b] +(b— a)k [ gl’k’”p[a.b]]'

3. BEHAVIOUR OF THE WEIGHT NEAR THE END-POINTS

The weight w is assumed to be continuous and locally positive. Therefore
w is bounded from zero and infinity in every closed subinterval of the
interior of [a, b]. But w may tend to 0 or oo at the end-points of the
domain. In this section we describe different types of behaviour allowed to
the weight. For defining these types we shall work with the neighbourhood
[0,d} (0<d< ) of the point 0 and the neighbourhood [d, o) (d< o)
of the point oc as representatives of the cases of finite and infinite
end-points, respectively. The results for the other end-points can be derived
mutatis mutandis.

In the neighbourhood [0, d] of the end-point 0 w will satisfy one of the
following three types of conditions.

Type 1. w is non-decreasing, v is strictly increasing in [0,d], and
v(0)=lim, _q40(x)=0.

The weights w(x)=x*|log x|? (x=00r0<o<1and fecRora=1 and
p>0) are of this type. In this case u is increasing, #(0)=0, and
0<w(0) < oo.
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For O << u(d) we set
Wt x)=tw(x+u(s)) {3.1)
assuming that w(x)=w(d) for x>d if w is not defined in {4, 24].
PROPERTY 1.1. For A>1 we have w(ix)<iw(x), viixi<iv(x), and
u{Ax) 2 aufx).

Proof.  Iw(x)=Ax/v(Ax}> ix/v(Ax) =w({ix). The same for ». We set
y=u{x), x=1v(y). Then v{u(lx)) = Ax=Av(y) = {4y} = v(lu(x)) and hence
u(ax)=Au(x). §

PROPERTY 1.2. Let A<i and |x— y\ < M(z, x). Then:

{a) Y6, x)<S2Y(t, y) and Yi(t, y) < L5 -y(s, x5
(b)Y y>x/4 for x =2u(r).
Proof. For =zzu(t) we have :z

Therefore y(r, x) = tw(x + u(r)) < x + u(t) and
Property 1.1 we get

v(z) = o(u(e)) wiz)=m{z}
vl < (x +u(r))/2. Using

Pl vy=twl(y+u()) <ow(LS - (x+ul2))) < L3 (4, x)

and
Yt x)=tw(x +u()) < w(2(y + ult))) < 24(t, ).

I x>2u(r) then y2x— (x+u(t))2=2x/4. |
Sometimes we shall require w to satisfy the additional conditions

j'vk(y)y*dysAluk(x) for every xe(0,d], (3.2)
4]

or
u{2x) < c{A) u{x) forany x>0, A>1 ix<d (3.3)

One can show that conditions (3.2) and (3.3) are equivalent; that is, w
satisfies (3.2) iff it satisfies (3.3), but we shall not make use of this.

PROPERTY 1.3. Let A>1 and let w satisfy (3.3). Then
AY(, x) <At x) < () Yis, x)

and

c( Ay, x) <yP(t/4, x) <yl x)/ 4.
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Proof. We have u(r)<u(At), w(x+u(t))<w(x+u(it)), and hence
Ap(e, x)<y(At, x). From (3.3) and Property 1.1 we get y(i1,x) =
Atw(x+u(dr)) < Amw(x+c(Bu(r)) < Aow(ec(ANx+u(r))) < ()
m(x +u(t)) = c(4)¥(z, x). Making the substitution ¢t — #/4 in the proved
inequalities we obtain the second ones. ||

Type 2. w is non-increasing and unbounded in (0, 4] and satisfies the
inequality

w(x)< 4,w(2x) forevery xe(0, d/2]. (3.4)

We define i again by (3.1). E.g., the weights w(x) = x*|log x|* (¢ <0 and
BeR or =0 and B> 0) are of this type. Now (¢, -) is non-increasing, u
and v are strictly increasing, v(0)=u(0)=0, and w(x) tends to infinity
when x tends to 0. The properties corresponding to these from Type 1 are

PROPERTY 2.1. We have v(Ax) = Av(x) and u(Ax) < Au(x) for 1> 1.

The proof is similar to the proof of Property 1.1.

PROPERTY 2.2. Let |x— y| <AY(t, x). Then Y(r, x)<(4,) (1, y) for
rzlog,(A+1).

Proof. We have y<x+AY(r,x) = x+ Atw(x+u(t)) < x+ Aw(u(t))
= x + Au(t). Therefore y + u(¢) <2'(x + u(r)) and (3.2) gives

Y(t, x)=tw(x +u(t)) < (42) tw(2"(x + u(1)))
< (A)'tw(y +u(?)) = (4:)¥(1, »). 1

PROPERTY 2.3. For A>1 there is f=p(A,, 1) > 1 such that

AP, x) <P(BAL, x) < APY(t, x)

and

Y(t, x)/(BA) <Y (t/(BA), x) <Y (4, x)/A.

Proof. First we shall establish:
For every 4> 1 there exists o =a(4, 4,) >1 such that

Au(t) < u(ade). (3.5)

From (3.4) we get v(2x)=2x/w(2x) < 24,x/w(x)=24,v(x). Set
r=[log,;+1] and «=2(A4,)". Then ov(ix)<v(27x)<(24,)v(x)<
2(4,)"Av(x) = adv(x). Replacing x by u(f) and using the fact that u is
increasing we get (3.5).

Let f =ad, where o is the constant from (3.5) for the multiplier 14,, i.e.,
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a=0a(Ad,, A5)> 1. If x> u(fit) then (3.4) gives (s, x) = Anw(x+u{r))
€ Atw(x) € A,tw(2x) < A, Aew(x +u(BAt)) < w(fAs, x)/n < B x)
If 6 <x<u(flr) then from (3.4) and (3.5) we obtain
A l(r, x)= A 4+ (1)) < Atwlu()) = du() < w(Bin)i4,
= BAtw(u(BA)) A, < BAtw(2u(BAr))
< farw(x+u(fA)) =y (PAr, x).

Moreover we have x+u(r)<x+u(dr) and A, x)=inv(x+ulr))>
Atwlx 4+ u(Ar))=1(Ar, x) and the first chain of inequalities is proved. The
second chain is derived by the first one using the substitution ¢ — 7/(81). §

Type 3. v is non-increasing in (0, 4] and w satisfies the inequality
(to=0v(d)2)

w(x) < A w(x —tow(x)) forevery xei0,d1. {3.6}

E.g., the weights w(x)=x*|log x|” (x>1 and feR or =1 and 8 <0)
and the weights w(x)=exp(—x~%) (& >0) are of this type. Now w is
strictly increasing, w(0)=0. We define ¥ by

YL, x)=1w(x). (37
PROPERTY 3.2. Ler O0<i1<ty, O0<A<<iy/t, x, vel0,d], and |x— yi <
APty x). Then Yi(t, x) < Afdt, y).

Proof. We have y>x—Amw(x)=x—iowix) Using (3.6) we get
Yit, x) < Asne(x —tow(x)) < A59(1, v). )

in the neighbourhood [d, o) of the end-point oo w will satisfy the
following condition:

Type 4. w is monotone, v is non-decreasing in {4, o}, and in addition
w satisfies the inequality (1, =uv(d)/2)

w(x) < Agw(x + tow(x)) forevery xe[d, o) {3.8}

if w is decreasing.

For convenience we set 4,=2 if w is increasing,

E.g., the weights w(x)=x*logx)’ (x<1 and feR or a=1 and $<€0)
and the weights w(x)=exp(—x*) (¢ >0) are of this type. We define ¥ by
(3.7).

ProPERTY 4.1. For A>1 we have w(ix} < sw{x)

Proof. Aw(x)=Ax/v(x) =z x/v(Ax)=w(ix). §
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PROPERTY 4.2. Let 0<t<1,, 0<A<t/t, X, ye[d, ®), and |x— y| <
Ay (t, x). Then (1, x) < A0(t, ).

Proof. Let w be increasing. Then y=x—AY(r, x)=x—1ow(x)=
(2—v(d)/v(x))x/2 > x/2 and using Property 4.1 we get (1, x)=1tw(x)<
tw(2y) < 2tw(y) = 24(t, p).

Let w be decreasing. Then y < x + Ay(t, x) < x+ tyw(x) and using (3.8)
we get w(x) < Aw(x+row(x))<A,w(y). 1

The weight w will satisfy the following global condition:

There exist As= 1, d;, a<d;<d, <d,<d,<b, and weights w,
in [a,d,] and w, in [d,, b] of some of the types described
above such that 1/4;<w(x)/w (x)<4s for xela d;],
1/As<w(x)wy(x)< 45 for xe[d,.b], and [/A;<w(x)< 45
for xe [d,,d,]. (3.9)

With v;, u;, and ¥, we denote the functions associated with the weight
w;, j=1,2. Then we set

(2k) =" (1, x) for xel[a d;];
Y(t, x)= | (2k) " "P,(t, x) for xeldy,b];  (3.10)
linear and continuous in [d,d,].

It follows from (3.10) that (¢, x) is equivalent to ¢ for x € [d;, d,]. The
multiplier (2k) " is chosen so that we shall be able to apply Property 1.2 in
the next section. This multiplier is of importance only when w being of
Type 1 does not satisfy (3.2). In the other cases we shall consider functions
¥ equivalent to ¥, ie., ¥ satisfying:

There is 4>1 such that 1/4<y(s, x)/Y(t, x)< A for every
x € [a, b] and the weights w, or w, from (3.9) satisfy (3.2) and
(3.3) provided they are of Type 1. (3.11)

This condition will allow us to give an appropriate form to the argument
of the r modulus in (1.4) (see Corollaries 5.1, 5.2, 5.3, 5.4, and 5.5).

4. INEQUALITIES FOR MODULI OF DIFFERENTIABLE FUNCTIONS

First two theorems concern the usual moduli of smoothness. The author
was not able to find any references on similar results. Applying these
statements we derive a proof of the first inequality in (1.4).
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THEOREM 4.1, Let w be of Type 1 in [0, d] satisfying (3.2). Then
w(f3 1), <elk) A e () w9,
Proof. From (2.9) and (2.8) we have

AEF<etk) [ ¥ F S+ )] dy
Y0

<clk)

rlich
[ k() k1) 4 )] dy

Y

= c(k) fkh v () I e+ ) 1S P+ o) d.

Y0
Using this inequality, (3.2), and Property 1.1 we obtain

kh
Hdﬁf(»’f)“p <c(k) L o)y IR C+ ) SO0+ I pro.d— ey dv

rkh )
<elk) | o) 3y [ o

< elk) Ao (kh) WOl , < (k) A o () w1,

This proves the theorem because of the monotenicity of v. §

THEOREM 4.2. For 1< p< o, 0<h<d, and fe W*,_ [0, d] we have

p.loc
”Ahf ”p[O d—kh]

<cthp {1 dene [ e a

! — YO )P e e
+ Hd— Y/ P dyy .
d—h

Proof. From (2.9) and (2.8) we have

145 f(x)]
~kh , . x+kh P .
<cti) [ R Pl dy et [ M
0 hgh'e
x+kh ) Lp [ ox+ ki vy
<elk) U phe =1t £y P dy] U yoiobr gy E
X X _t

x+ kh

- 1.p
< C(k) [J },ka Lp \f‘k)(}’)l P dl:l plsp’xflvtpp'ﬁl

X
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Therefore
~h
| 14k p01 dx
[
, h . pxtkh ,
Sc(k)”p”"’j x_l""’f ykp*lf"’lf(k)(yﬂpdy dx
o x
; o, (k+ 1A ) ¥ o
<clkyper [yt ) [ e dy
0 0
) e+ 1)k
<cthypr [P ay
0

h c(k+ 1)k
<ctor? | [ oo [ o s | @

Changing the variables x - d—x and A —» —#4 in (4.1) we obtain

d—kh d—h
J |45 £(x)1 7 dx < (k) p? [h"" [ /9" dy
d—tk+ 1)k d—{k+ L)k
d
+f (d—)r’)"”lf“"(y)l"dy]- (42)
"

Moreover we have

d—(k+ 1)k
] |4 F(1 7 dx

h

d—h

<o f; h)i[h‘d—h] <h* ”f(k)“ Plhd—n1= h Jh FAK Y]k dy. (43)

Combining (4.1), (4.2), and (4.3) we obtain the statement of the
theorem. |

CorROLLARY 4.1. [f 1<p<w and w is of Typel in [0,d] or w is
symmetric in [0, d ] and is of Type 1 in [0, d/2] then

wi(f; 1), < (k) po(2) W |,

In comparison with Theorem 4.1 we do not require w to satisfy (3.2) in
Corollary 4.1 but we have to pay for this by excluding the case p = cc.

LEMMA 4.1, Letw be of Typei, i=1, 2,3, 4, and let w satisfy (3.2) being
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of Type 1, 0 <t <e(w), n=1/(2k), [o, B]1=10,d ] if w is not of Type 4 and
T, B1=1[d, x)if wis of Type 4. Then

Tk(g;f]w([))p_p[x.ﬁ]gc(kv w)“ng[x,ﬂ] lf geLP(&f7 ‘3] (44?
Tklg’ nlpi[))pp[m ﬁ]scik7 \4") Ik ““‘kg(k)up[z,ﬁ] i.r{‘ ge H”’;{M‘)- {45}
Moreover the statement of the lemma is true for p < oo and arbitrary weighis

of Type U but with constant c(k, w, p) in (4.5).

=1,2,3,4) we get |x— y| <e(w)(s, 31

Proof. From Propertiesi2 (i
|x— v|<r1k¢/(t x). Therefore for every

provided x, ye[«, f] and
vela, f] we have

meas{xe [o, f1:|x — y| <nkf(s, x)} Sclw) (s, y) {4.6)

From (2.6}, Properties 1.2, and (4.6) we obtain

Tk(g!y’llb(t))pp[xﬂ}
e T
=1 [ (8 X5 (1, x))de]
B 1ip
s[] ig(v)l”dx]

1:p

b nk (2. x) ‘[
et | | 2/»¢,(r,x)j | g(x + 2)|7 dz dx
2 — kit x) j

B pnkyisx) tp
<helyeteom| [ |t x e dea |

x ¥ —nkd(r, x)

rB Lp
<lgll,+clk, W)[J | gt y)\”dﬁ] =clk, w)lgll,
which proves (4.4).
Reasoning as above and using (2.7) instead of (2.6) we get

Tk( g» y]w(t))p,p[z,ﬁ]

<cth)| ["w e

nkys (1, x) Lp
j }g(x+z)i-"dzdx]

— ks, xt

B 1p
<ctieow)| " w10 159007 ar |
-4 .

From this inequality we obtain (4.4) when w is not of Type !l because
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W(t, y) <tw(y) in this case. Let w be of Type 1. We divide [0, 4] into two
parts:

du(r) Up
gm0 proar<| [ oul xinbte g |

1/p

+Ud wil g, x; (s, x))"jdx] . (4.7)
dult)

Let xe [4u(t),d] and |x — y| <nky(t, x). From Property 1.2.b we have
y=x/4zu(t) and from Property 1.1 we get y(z, x)<m(dy)<dm(y).
Using (2.7), Property 1.2.a, and (4.6) we obtain

[J‘d (g, x;mlf(t,X))ﬁd«YJ I

4u(r)

nky(1,x) Lp
|g¥(x+2)|7 dz dx:|

—nkyr(t,x)

<clo)| [7 w0

d Lip
<cten)| [ 16900 v ) o
<clk) 1w g N pruen.ar- (4.8)
For xe [0, 4u(¢)] from Property 1.1 we get u(r)<y(zr, x) < tw(Su(t)) <
Stw(u(f)) = Su(t). Now (2.5) and Lemma 2.3 give
4u(r) ) Lip
UO (g x;mp(t, x))? dX]
Au(r) Lp
<5 U (g x; Su(t))? dx]
0
<5105 5mu(t)), pro.a1 < clk) i (g5 u(?)) o, a1 (4.9)

Now (4.5) follows from (4.7), (4.8), (4.9), and Theorem 4.1 if w satisfies
(3.2) or Corollary 4.1 otherwise. ||

Now we are ready to prove the first inequality in (1.4).

THEOREM 4.3. Ler w satisfy (3.9) in [a, b], let the weights w, and w,
satisfy (3.2) being of Type 1, and let s satisfy (3.10) for 0 <t<c(w). Then
for every feL,[a, b]+ W’;( w) we have

clke, w) T, (590, praey < K(, f; L,[a, b], Wi(w)). (4.10)

If w, or w, does not satisfy (3.2) being of Typel then (4.10) is true for
p < oo with a constant depending also on p.
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Proof. From (3.10) and Lemma 2.3 we get {5 = 1/(2k))

T,/ lﬁ(”)p, D)
<Ud3 wlf X3, x));dx] v

ady Lp b 1.p
+D i fs x5 ¥, x))E dx] +U wi{ f, X1 ys, x})id}:}
d3 ¥dy i
S clk, w50 (D). praasy + @clS Upras,ann
+ 1 (51 a(1)), pras.en - (411

From (2.2} and Lemma 4.1 for any ge W’p‘(w) we have

Tk(f; "lpl(t))p,p[a,dﬂ
St/ —gmh () praay + Tl &5 10 )y preas
< C(k7 “;){ Hf— ng[u.b] + tk H“‘kg{k)“pi:a,b] }

Therefore

Tk(f; nllllit))p. pla.di} < C(k5 W) K([ks f’ Lpa WV};\;(H” ‘1412}
In the same manner we get

Tl S o), pras o1 S €l w) K(25, f3 L, WEw)). {4.13%

From (1.3) and (3.9) we obtain

O3 D pras.an < (k) K(E5, f3 L, [dy, d, ], WE(1))
<elk, w) K(1%, 5 L[ a, 5], W(w)). (4.14)

Combining (4.11), {4.12), (4.13), and (4.14) we prove (4.10). §

The next example shows that (4.10) is not valid when p = o«c and that
is an arbitrary weight of Type 1.

EXaMPLE. Let w(x)=x{1—-Inx)¥* f(x)={1—Inx)"”* for xe [0, 1].
Then 7,(f; ¥(£)) . wpo,1]= % because f is monotone and unbounded but
wkF®) < (k) and therefore K(t*, f; C. WX (w))= O(t*).

61056 2-6
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5. A CHARACTERIZATION OF THE WEIGHTED K-FUNCTIONAL

In this section we prove the second inequality in (1.4) and complete the
characterization of the weighted K-functional. In order to do this we first
construct appropriate intermediate functions when w is of different types.

LEMMA 5.1. Let w be a weight of Typel in [0,d], O<t<v(d) and
0<n<1/(2k). Then for every fe L,[0,d] there exists g€ W’[f(l) such that
g®(x)=0 for xe [0, nku(1)/3],

If = gllpro.ay < c(k) T fs MY ()1, pro.ass (3.1)
(ki (£)Y g™ ppo.an < (k) Tl fs M (D)1 oo, a1- (5.2)

Proof. Weset yo=0, y;, =y, +h;, h,=nky(t, y;)/3, j=0, 1, s.. There
exists n such that y, <d< y,,, because of 4,2 nku(r)/3>0. We shall work
only with the points yq, ¥1, .., ¥, Where we set y,,, =4 From the
monotonicity of (¢, -) and Property 1.2 we get

L<h /<2,
(5.3)
1<nky(t, x)/(3h;)<2  forevery xely;, y,..]

Let u be the function from Section 2. We set ug(x)=1— u((x— yo)/h;),
pix) = p((x — p)/h)L — (> — y; /B )] for j=1,2,.,n—2 and
tn1(x)=p((x~y,_1)/h, ). Then 3 7=4 u(x)=1 for every xe [0, d ] and
the only functions y; which do not vanish in [y;, y;,,,] are p, for j=0,
4y and y; for j=1,2,.,n—1, and p,_, for j=n.

We denote by Q,eH, , the polynomial of best algebraic L,
approximation of degree k—1 to f in the interval [y, »;..],
j=0,1,..,n—1 From (2.1), (5.3), Lemma 2.3, and (2.5) we get

If =il sy 3,021
< clk) wu(fs (h+ Ry K pry, 4
<lk) 0u(f; 3h,/K) ot 1o S ) Tl 3 30,061 i 5o
< () Tl Fs (D)1, 001 (54)
We set
n—1

V=Y, wlx) Q). (55)
Jj=0

Now from (5.5) and (5.4) we get
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n-—-1

Z lv‘j(f" 0)

¥4

f— gHZ[O.d]:

iy pL0.d]

n—1 a2
<Y [T - 0, dx
=0

n—1

<ck)? Y [ olf ximpte, x))p dx

j=0"%

<C(k)pfk(f§’7¢’([))f',p[o,d] . {5.6}

So we have proved (5.1). It follows from (5.5) that ge C*[0,d] and
g¥(x)=0 for xelyo, »31Y[¥u> yus1ld Let xely;, 3,1 for some
J=12,.,n—1 Then g(x)=0Q, (x)+ul(x—y}h;)¢(x) where ¢=
O,—Q;_, and therefore

) . k < - (¥ ¥4l
thl"yg(k/ﬂp[y,._vﬁ_l} S Z (l’) H”l/‘ 7”H “ h; !Hﬁb)H,’;[Jy._;[‘v+1j‘ 55’)
r=0

From Lemma 2.4 (or Markov’s inequality) and (5.4) we obtain

h/r H¢(r)Hp[yj,yj+l] < C(k) ||¢Hp[}'v,,,\'!+1j
< C(k){ HQJ ‘j‘HP[,‘)u‘/+l} + H QI"I _-‘f“P[."/n‘)*l]}
SAdk) (s D pry, s (5.8)

1t follows from (5.7) and (5.8) that
th g(k’“p[},.yﬁ.l} < C(k) Tk(f; r!lp(t)}i,p[_\;,,l.ylng' {59}

Using (5.3} and (5.9) we get

Ik (1) g™ Pro.d1
n—1

= % [T k(e x) g d
j=0 "3

M+t .
<67 % hr [ 15 017 dx
j=0 ¥

n-—-1 v+

<clk)? Y [ wuf, xmpe, X)) dx

j=0 "yt
<ck)P il fmp U] pro.ar-

This completes the proof. §
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LEMMA 5.2. Let w be a weight of Type 2 in [0,d], 0 <t<v(d), let A, be
the constant from (3.4), and let 0 <n < 1/k. Then for every f € L,[0, d] there
exists g€ W(1) such that g¥)(x)=0 for x € [0, nku(r)/(1 + 4,)],

If— g”p[o,d] <clk, Ay) Tl f; "Ilﬁ(f))l,p[o.d],

and

||(’7k‘//(t)kg(k)“p[o.d] Sclk, Ay) T f5 'Il//(t))l.p[o.d]-

Proof. Weset yo=0,y,. ,=y,+h,. h=nkf(r, y;)/(A,4+1),j=0,1, ...
From Property 2.2 we get

1< h/h

j+1\

and 1< (14 4,) hy/(nky(t, x)) < A4,
for every xe [ y;, y;, 1] Now we proceed as in the proof of Lemma 5.1. ]
LemMA 53. Let w be a weight of Type3 in [0,d], O<t<ty=0v(d)/2,

let A5 be the constant from (3.6), and let 0 <n<ty/(kt). Then for every
feL,[0,d]+ W¥(w) there exists ge Wi(w) such that

I/ — &l pro.a7 < clk, A3) Tl fs mY ()1 pro.aq

and

H(nkw(t))"g“"il,,[o,d] Sclk, As) te(fs mp(2))1, pro.ay-

Proof. We set yo=d, y, .y = y;—h;, h; = nkp(t, y,)/(1 + 45) =
nktw(y,)/(1+ A43). In this case we have &, <tow(y;)=v(d) y,/(2v(y;)) < y,/2
and therefore y; is well defined for every natural j. Let ye(0,d) and
J>(d—y)(1 + Ay)/(nktw(y)). Then y <y and hence lim y,=0 when
Jj— oo. From Property 3.2 we have

1<hi/h, <A, and 1< (14 A4;) hy/(nky(t, x)) < A5

for every xe [y, ¥;]. Now we proceed as in the proof of Lemma 5.1 but
the summation is to infinity. ||

LEMMA 5.4. Let w be a weight of Typed in [d, ©), 0<r<ty=0(d)/2,
let A, be the constant from (3.8), and let 0 <n<ty/(kt). Then for every
feL,[d, o)+ W(w) there exists g€ Wi(w) such that

If— g“p[d,-x;) <clk, Ag) Tl S my (), pld, %)
and

”('Iklp(t))kg(k)“p[d,oo] <clk, A) T (5 1 (D)1, pra o)
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Proof. We set yo=d, y;, 1=y, +h;, hy=nkyt, y,)/{1+ A,). As in the
proof of Lemma 5.3 we get y;,— oo when j— . From Property 4.2 we
obtain

Uil <A, and  L<((14 A5) Afinkir(s, X)) < 4,

for every xe [ y;. v, 1], where e=1 if w is non-increasing and ¢ = —1 if w
is non-decreasing. Now we proceed as in the proof of Lemma 5.1. §

Let us remark that all four lemmas can be applied for fe L, + Wﬁ(w}
because L, + Wh(w)= L, when w is of Type 1 or 2.

THEOREM 5.1.  Let w satisfy (3.9), let y be given by (3.10), and let
O<t<c(w). Then for every feL,{a, b]+ W;‘;(‘.v) there is ge W’;(w) SUCH
that g"*(x)y=0 in a neighbourhood of the left end-point a with length
c(w) u,(1) provided w, is of Tvpes 1 or 2, g*(x)=0 in a neighbourhood of
the right end-point b with length c(w) u,(t) provided w, is of Types 1 or 2,
and

)

1f = &l prasy + I €N pra sy < clhes w) Tl £ () prass-

Proof. We shall use Lemmas 5., i=1, 2, 3, 4, with n=1/(2k}. Let g,
and g, be the functions from Lemmas 5.i for the weights w, and w, in the
intervals [a, d;] and [d,, b1, respectively. Let g5 be the function from
Lemma 5.1 for the weight w=1 in the interval [d,, d,] (we can also use
the modify Steklov function for f in this interval as g;). We set

glx)=pl(x—d3)/(d, — d3))[1 — pul(x — dy)/{d; — d2)) ] g5(x)

+ [ —u((x —d3)/(dy, — d3))] g1(x) + p{(x —dy ) {da— dy)) ga{xh
(5.10)

From Lemmas 5.i and (5.10) we get

1/ = &llprass < 1S = &ullptaay + 1/ = &lippas a2 + 1 = Eallpras o
Selk, w) (5 ()1 pras

and g'*) vanishes in suitable neighbourhoods of the end-points. Therefore

whg ™, < clk, w)llg (0)g ], (511}

Indeed rwi{x)<y(z, x) when w is not of Type 2 and for w of Type 2 {in
[0, d]) and x> Au(t) using (3.4) we get

twix) < e(w, 1) tw(x + x/A) < e(w, ) ow{x + u()) <clw, 4) ¥le, x).
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From (5.10), Lemma 2.4, (3.10), (5.11), and Lemmas 5.1 we get
”Wkg(k)”p[a,b]

<c(k, w) {”Wlf g(lk)”p[a,dl] + ”Wl; g(zk)“p[dz,b] + ”g‘k]”p[dg.zh]

k k
+ Z “g(lj)_ggj)”p[dz,dll'i_ Z ”g(Sn_g(Zj')”p[dﬂndl]}
=0

j=0 J=
<clk, w){IWi 8PN praay + 15 85 pras. 67 + 1851 pras. a7
+ g1 —pr[dj,d,] +1g; _f”p[dj,d_d + |Ig2_f“p[dz.d4]}
Lelk, w) t e [3¥ (D)1, pras
which proves the theorem. ||

Combining Theorem 3.4, (1.1), and Theorem 5.1 we obtain

THEOREM 5.2. Let w satisfy (3.9) in [a, b], let the weights w, and w,
satisfy (3.2) being of Type 1, and let \ satisfy (3.10) for 0 <t < c(w). Then
for every fe L,[a, b]+ Wi(w) we have

(ks w) Tl fs WO prasy S K(2, £ L[, ], Wh(w))
< clk, w) Tl 591 prasy-
If w, or w, does not satisfy (3.2) being of Type 1 then the first inequality
above is true for p< oo with constant depending also on p.

In order to allow more flexibility in the choice of the argument function
Y of r moduli in the above theorem we shall prove

THEOREM 5.3. Let w satisfy (3.9) in [a, b] and let  satisfy (3.11) for
0 <1< c(w). Then for every f€L,[a,b]+ Wk(w) we have
C(ka W) Tk(f; l//(t))p.p[a,b] <[((tk:v f’ Lp[a7 b]’ I/Vll;(w))
Selk, w) o5V ()1, prasy- (5.12)
Proof. In view of the inequality

T (59 (). prany S Tl 5900 prasas
+ T (50, pras.as1 + Tl WD), prassr (5:13)

for proving the first inequality in (5.12) it is enough to estimate every term
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in the right-hand side of (5.13) with the K-functional in {5.12}. From (3.11},
{2.5), Lemma 2.3, and (1.3) we get
f ¢' ’p plds,di]
< C(ka H’) Ty f’ C(k7 M")[)p,p[djg,d‘;]
<clk, w)ya(f; elk, W)I)p[dj.dﬂ <celk, w)w lf; Dot aui
<clke, w) K(i“ f; L,[ds, d,], Wi(1)) <clk, w) K(t*, f; L,[a, b]. Wh(w)h
In view of the symmetry of [a, d;] and [d,, »] we shall only consider

the modulus in the first interval. From (3,11} we have (s x)<
A (1, x)/(2k) < A*Y(t, x) and now (2.5) gives

T f5 l//(t))p_p[u, a1 S Ayl S Al/ll{")/(zk))p,p[a,d;;]’ (5.14)

If w, is of Type3 or 4 then Ay ()= (Ar). If w, is of Type!l or 2
then Property 1.3 or 2.3 with A=4 gives (§=1 for w; of Typel}
A (8, XY (2k) < (BAL, x)/(2k) S el A) (2, x)/(2k). Now (2.5} gives
(f Al// )(Zk /p. pla.ds]
So(A) T lfs (W (BAY (25D, ora,ay1- {5.15}

Now from (5.14), (5.15), Theorem 4.3, and (1.1} we get

TS5 l//(t))p.p[a.dg] <cld) Tt lf; ll’l(BA[),/(zk))p,p[a.dﬂ
<clk, w) K((BANY, f; L,[a, 5], Wi(w))
<clk, w) K(*, 5 L,[a, b1, Wh(n))
which completes the proof of the first inequality in (5.12). For the proof of

the second inequality in (5.12) we use the same statements arguing in
reverse order.

Now we shall derive corollaries from Theorem 5.3 for the weighis

mentioned in Section 1.
Let w(x)=./(x—x?), xe[0,1]. We can choose d,=1, dz 2 dy=14
\12

= 3
dy=3, wi(x)=/x, and wy(x)=./(1—x). Then u(¢)=1* (1 x

t \/{x + r*). Therefore we can choose Y(¢, x)= n(x) L 2.

CoroOLLARY 5.1, For Y(t, x)= t\/(v— X2y + 1% we have

ok, w) Tl f5 l//(t))p,p[()‘l] < K(r, Vi LpEOS 1], Wyi;{x/(«\'— -‘(2})
etk w) T (581, rony-
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Reasoning in the same manner we get
COROLLARY 5.2. For y(t, x)=1,/(1—x*)+1* we have

clle, w) Tl 59y pr 1.1 S KUK 3 LL—1, 1], W/ (1= x?)))
<clk, w) Tl 596, pr -1, 17

CoROLLARY 5.3. For y(t,x)= t\/;+ 12 we have
ok, w) Tl £ W), pro.o) S K1, £3 L, [0, 0), WE(/X))
< C(k, “’") Tk(f; w(t))p,p[o,oo)‘

COROLLARY 5.4. For y(t, x)=1/(x+ x*) + > we have
C(k’ W) rk(f; l//(l‘).)p,p[o,ao] < K([k’ f: Lp[o’ OO)’ W/;(V (.\‘ +x2)))
< C‘(k, W) Tk(f; lnb(l‘))p.p[o.co)'

At the end we shall derive a result having applications in best
approximation by algebraic polynomials and approximation by operators.
Let w be symmetry in [0, 1] (ie., w(l —x)=w(x)) or let w be a weight in
[0, o) and in both cases let w, from (3.9) be of Type 1 in [0, 1] satisfying
(3.2). Let us denote by u the function u, corresponding to w,. We set

K*(t%, f5 Ly, Wi(w))=inf{|| f — g, + “ [wgl, + u() 1 8“1, }.

THEOREM 5.4. Under the above assumption we have
K(t%, £y K*(t5, f) < ek, w) K(t%, f). (5.16)

Proof. The first inequality in (5.16) follows directly from the definitions.
Let g be the function from Theorem 5.1 corresponding to /. We have

u(t)k ” g(k]”p < c(k, ‘V) tk “ nvkg(kl“p

because g*’=0 in [0, ¢(w)u(r)]. Combining this inequality with
Theorems 5.1 and 5.2 and (2.4) we get
K*(t5 )< f = gl + 51w g™, +u(2) 11 g™,
<clk, w){If— gl , + t“Iw g™, }
Selhk, w) (59 (),
<c(k, w) K(t5, ).
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As a corollary of the last theorem one can mention the inequalities

inf{ If— g“p[o,l] + [{(x— xz)k'/zg(k)(x)“p[o,x]
+t2k”g(k)“p[0.l]: g}
Sc(k)inf{”f_ng(o.1]+’kH(X— ) m /’“p[{)‘] g}

and

inf {1l f = gl pro.oer + 1 2240 po. )
+[2k“g(k)“p[0.oo):g}

< c(k) iﬂf{”f— g“p[O.oo) + fk||«\’k'vv2g(k)(-‘-’)”p[o‘x)3 g}-

6. PROPERTIES OF THE MODUL!I

In this section we derive several properties of the moduli following from
their equivalence with the weighted K-functional.

THEOREM 6.1. Ler  satisfy (3.11}) for some w satisfring (3.9},
C<r<e(w)and 1 <q<r<p. Then

U591, STl Y1), S clh, w) Tl F58(0), -

Proof. The statement is an immediate consequence of {2.4) and
Theorem 3.3. |}

In other words all moduli 7, are equivalent to one another when the
index of the local modulus g runs between | and p. It should be mentioned
that the moduli corresponding to different ¢’s, ¢ = p, are not equivalent.

Another consequence of Theorem 5.3 is the quasi-monotonicity of the
moduli with respect of w and 1, ie.,

THEOREM 6.2. Let \y and Y be connected by (3.11) with w and W, respec-
tively, where the weights satisfy (3.9). If w < cw then

Tk(f; lp([))p.p < C(k’ W) Tk(f; Vy([))p‘p'

THeOREM 6.3. Let  satisfy (3.11) for some w satisfying (3.9).
O0<t<c(w)and fe L,+ Wk(w). Then there is a nondecreasing function of
(for example the weighted K-functional) which is equivalent to t,(f; y(1)), ,.

The following theorem is an analog of the weil-known property of the
moduli of smoothness w,(f; A1), < c(k) Aw(f; 1),



208 K. G. IVANOV

THEOREM 6.4. Let  satisfy (3.11) for some w satisfying (3.9), A>1 and
O0<dr<c(w). Then

w3 ¥(21)),, , < clk, w) A1 (S5 4(2)),, -

The proof follows from Theorem 5.3 and the trivial K-functional
property K(At, f)<AK(t, f) for A> 1.

At the end we give formuli for caiculating the magnitude of the moduli of
locally differentiable functions. By analogy with Theorem 4.2 for p < oo, w
satisfying (3.9), w, and w, of Type 1 or 2, and ¥ given by (3.11) we have

wylr %74
b O oy <t {| [ 140017 @ |

1—us) Lip
+ 1 U WY O (r)? dy]

uy(1)

A aesreonrs | 6

1t — (e}
For p= oo, w satisfying (3.9), and ¢ given by (3.11) we have

Tl 5 ¥(2)) o0, 010.11
<clh, wH{a(fs ui(t)) oo, cucn
+sup{|w(p) O (p)l: ye Luy(2), 1 —uy(1)1}
+0i(f5 Ua(1) o1 - w11} (6.2)

and we can use Theorem 4.2 for evaluating the moduli of smoothness in
this formula.

Using (6.1) and (6.2) for w(x)=x* —oo <a<l, f(x)=x* B> —1/p,
0<x<1, we have

(5 W), pro.11
t(bp+1),'(p—ap), if ﬁ+1/p<(1—cx)k;
<elk, o, B) { t%|log 1], it B+1/p=(1—a)k;
%, if B+1/p>(1—a)k

In all cases above except $=0, 1,..,k—1, the r modulus is actually
equivalent to the quantity from the right-hand side because all finite
differences of f of order k have one and the same sign.
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7. FUNCTIONAL SPACES GENERATED BY
THE WEIGHTED K-FUNCTIONAL

Let us denote with B;4(w) the interpolation space obtained by the reai
sfk, g interpolation between the spaces L, and Wk{w), ie,

14 1 Lg ]
Bse(w)= {fe L,+ Wk(w): UO £ K, £ L, W)Y dt] <2}

< J

By4(1) are the usual homogeneous Besov spaces and so B;“(w}) may be
called weighted Besov spaces. The aim of this section is to establish, when
possible, proximate, embedding results of the type Bj'7(s ;) = B:»%(w,).

For simplicity we deal only with weights of Typesi, 2, and 3 in
fa,b]=10,17 in this section. Let w, and w, be not equivalent and le:
w=w,/w, be non-decreasing. Then obviously

K(t*. f; L,, We(w)) <max{1;w(l}} K(r*, f; Wh(w,)) {7.

~3
s
=z

and hence B, ?(w,) <= By9(w;).

Now we shall invert the direction of the inequality in (7.1) changing the
argument of one of the K-functionals. We have w{0) =0 because v, and »-,
are not equivalent. Let w; and w, be of Type 1 or 2 (for w, of Type 3 see
Example 2), let w, satisfy (3.2) being of Typel, and let v;, u; be the
functions associated with w; (j=1, 2). We set

N(1) = v, (u(1}). (7.2)

THEOREM 7.1.  Under the above assumptions we have
K, =K, £ L, Wew, ) ek, wi,ows) KIN(OS, £ L, Wetw,))
=c(k, wy, w,) K.

Proof. Tt follows from (7.2) that u,(N(t})=u,(r). Let g be the function
from Lemmas 5.1 or 5.2 corresponding to f, w,, and N{t) instead of w and
t. Then we have

g9(x)=0  for xe[0en(t)]  (e=clw,): (7.3)
Hf_gl|p[0,l]<c(k’ W:)Tk(ﬂ_llll(N(T)})z.p[o.i}§ {7.4}
H_lﬁ1(N(7))kg(k)||p[o,1] Sclk, wi) Tl 5 0 (VO 1 proanss (7.5}

where 2kify ((N(2), x) = N(t) wi(x +u, (N(2))) = N(t) wi(x + uy(1)).

Let i1>1. From Property 1.1 and (3.4) we have w,{(ix)<Adw (x)} or
wi{dx)<w,(x) when w is of Type 1 or 2 and w,{Aix) = wy(x) and w,{ix) >
c{A, wy) wo(x) when w, is of Type 1 or 2. Therefore w(ix) < {4, w,) wix}
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and for every x> eu,(tr) we have (A=max{1, 1/e}) w(x)=w(euy(t))>
w(uy(1)/4) Z elwy, wo) wlup(2))  and  w(uy(1)) = wi(uy(1))/w,(us(t)) =
vy(u5(1))/v(uy(1)) = t/N(t). Therefore

two(x) < e(wy, wy) N(t) w,(x) for x> eu,(2).
Combining (7.3), (7.5), and the above inequality we get
* lwk g(k)Hp[O.l] <e(wy, wy) N(t)* || wk g(k)”p[O.l]
< clk, wi, wy) [l (N(2) g™ o, 11- (7.6)

Now from (1.1), (7.4), (7.5), (7.6), and Theorem 4.3 applied for w, and
N(t) instead of w and r we obtain

Ky < f—gll, + 1wk g0, < el wi, wa) T f5 Y o (N(0)),,
<clk,w;,wy) K. |
CorOLLARY 7.1. Let —oo<a<f<1 andlet 0= (1~ p)/(1—a). Then
K(t5, fi L, Wo(x*)) < c(k, o, B) K(1*, f; L,, W,(x%)).

Proof. We have wi(t)=1, v (t)=1""F wyt)=r1% vy(t)=1""%
uy(t)=1"*"%, and N(t)= Now we obtain the corollary from
Theorem 7.1. |}

g

Combining (7.1) with Corollary 7.1 we obtain

COROLLARY 7.2, Let —~ooc<a<f <1 and let 6 =5(1—F)/(1 —a). Then

B (x*)<e B; (xF)c B (x%).

ExaMpPLE 1. For fixed a, f§, and p the embeddings in Corollary 7.2 can-
not be improved in terms of Besov spaces. We shall give the examples only
for the case p=g=oc. Let 0 <y <1 and let f(x)= (1 —x)". Then from (6.2)
we get that the T moduli for both weights are equivalent to #*. This shows
that the first embedding is sharp. Now let O0<y<1, k(1 —p)>7, and
f(x)=x". Then from (6.2) we get that t moduli for the weights x* and x*
are equivalent to (”*~* and £/~ #)  respectively; ie., the second
embedding cannot be improved.

ExaMpPLE 2. From K(i% f;L,, W¥%w,;))=0(*) and w, of Type3 it
does not follow that K(¢*, f; L,, W (w,)) < 0. Let fi(x) =x "%, wy(x) = x%
Then K(¢% f; L, W5 (w )< Iwh Bl = c(k) £ but 4 fi; 192) o
= o0 provided w,(x) x> — oo when x — 0.



o

19—

[

[
j&8]

[
Jraor
[

WEIGHTED PEETRE K-FUNCTIONALS

REFERENCES

. H. Berens anD G. G. Lorentz, Inverse theorems for Bernstein polynomials, /ndigna
Univ. Math. J. 21 (1972), 693-708.

Y. A. BRUDNI, Approximation of r-variables functions by quasi-polynomials, zv. Akad.
Nauk. SSSR Ser. Mar. 34 (1970), 564-583. [Russian]

. Z. DrtziaN, On interpolation of L,[a, b] and weighted Sobolev spaces, Pacific J. Maih.
90 (1980), 307-323.

. Z. DrtziaN, Interpolation theorems and the rate of convergence of Bernstein polynomials.
in “Approximation Theory III” (E.W. Cheney. Ed.). pp. 341-347, Academic Press,
San Diego, CA, 1980.

. Z. Ditz1aN AND V. ToTIK, Moduli of smoothness, SSCM 9. Springer, New York. 1987.

. A. GRUNDMaNN, Inverse theorems for Kantorovich polynomials, Fourier analysis and
approximation Theory, in “Proc. Conf. Budapest, 1976, pp 395-40!.

. K. G. Ivanov, Direct and converse theorems for the best algebraic apprcximation in
Cl—L!]and L,[—1,1]. C.R Acad. Bulgare Sci. 33 (1980}, 1309-1312.

. K. G. Ivanov, On a new characteristic of functions, 1. Serdica 8 (1982), 262-279.

. K. G. Ivanov, A constructuve characteristic of the best algebraic approximation in
L.[-L 1] (1<p< ), in “Constructive Function Theory 1981, Sofia,” pp. 357-267.

M. W. MuLLER, Die Gute der L,-Approximation durch Kautorovic-Polynome, Maih. Z.
152 {1976), 243-247.

. L. ScHUMACKER, “Spline Functions: Basic Theory,” Wilev, New York, 1981.

. V. ToTix. An interpolation theorem and its application to positive operators. Pacific J.
Marn. 111 (1984), 447-481.

13. V. Totik, Uniform approximation by positive operators on infinite intervals. Ana/ Math.

10 (1984), 163-183.

i4. H. WHITNEY. On functions with bounded n-th differences. J. Math. Pures Appl. /%) 36

(1957). 67-95.



